Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Effect of CH₃NH₃Pbl₃ Thickness on Device Efficiency in Planar Heterojunction Perovskite Solar Cells

Dianyi Liu, Mahesh K. Gangishetty and Timothy L. Kelly*

Department of Chemistry, University of Saskatchewan 110 Science Place, Saskatoon, SK, Canada, S7N 5C9

* e-mail: tim.kelly@usask.ca

Figure S1. (a) Powder X-ray diffraction patterns of PbI_2 films deposited by spin coating (S-PbI₂) and thermal evaporation (E-PbI₂), and the corresponding CH₃NH₃PbI₃ films after dipping in methylammonium iodide solution. All films were deposited on ITO/glass substrates. (b) SEM micrograph of a perovskite film produced from a spin coated PbI₂ film; (c) SEM micrograph of a perovskite film produced PbI₂ film.

Figure S2. The unit cells and cell volumes of lead iodide and tetragonal $CH_3NH_3PbI_3$: Pb (grey), I (purple), C (brown) and N (pale blue). The unit cell of $CH_3NH_3PbI_3$ contains four $CH_3NH_3PbI_3$ units, and so the volume per $CH_3NH_3PbI_3$ repeat unit is 248 Å³.

Figure S3. Williamson-Hall plots for $CH_3NH_3PbI_3$ films of various thicknesses. Contributions from instrumental broadening were not subtracted from the data; however, the FWHM of a polycrystalline Si standard indicated the degree of instrumental broadening to be < 0.05° (2 θ).

Figure S4. Particle size as measured by SEM (blue triangles) and minimum grain size as determined by a Williamson-Hall analysis of powder X-ray diffraction data (red squares) as a function of perovskite layer thickness. The linear fits are a guide to the eye.

Figure S5. Microstrain (as calculated by a Williamson-Hall analysis of powder X-ray diffraction data) as a function of perovskite layer thickness.

Figure S6. Height mode AFM images of CH₃NH₃PbI₃ films of various thicknesses on ITO/ZnO substrates: (a) 200 nm, (b) 280 nm, (c) 400 nm, and (d) 560 nm. All images were of a 15 μ m × 15 μ m area. The samples had root-mean-squared surface roughnesses (R_{rms}) of: (a) 33, (b) 29, (c) 23, and (d) 49 nm, respectively.

CH ₃ NH ₃ PbI ₃ Thickness (nm)	$R_{\rm s} \left(\Omega \cdot {\rm cm}^2 \right)$	$R_{\rm sh}({\rm k}\Omega\cdot{\rm cm}^2)$
110	170	0.22
210	13	3.0
330	8.0	4.0
410	12	0.42
490	41	0.24
580	110	1.2

Table S1. Average series (R_s) and shunt (R_{sh}) resistances for perovskite solar cells.

Table S2. Tabulated fit parameters for the EIS data.

CH ₃ NH ₃ PbI ₃	$R_{\rm s}\left(\Omega ight)$	$R_{\rm co}\left(\Omega ight)$	$C_{\rm co}({\rm F})$	$R_{\rm rec}\left(\Omega\right)$	CPE_{μ} -T (F)	CPE _µ -P
Thickness (nm)					·	·
110	64	5	1×10^{-7}	1	2×10^{-3}	0.57
330	52	31	6×10^{-3}	116	$9 imes 10^{-8}$	0.84
580	39	1250	2×10^{-7}	1323	9×10^{-7}	0.67

Figure S7. Schematic of the ITO/ZnO/CH₃NH₃PbI₃/P3HT/Ag devices tested in this work, showing the effect of the roughened CH₃NH₃PbI₃/P3HT interface on the hole-extraction efficiency.