Supplementary information

Dithienopyrrolobenzothiadiazole-Based Organic Dyes for Efficient

Dye-Sensitized Solar Cells

Zu-Sheng Huang^a, Hao-Lin Feng^b, Xu-Feng Zang^a, Zafar Iqbal^c, Heping Zeng^a, Dai-Bin Kuang^{b*}, Lingyun Wang^a, Herbert Meier^d and Derong Cao^{a*}

^a School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China

^b MOE key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and

Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China

^c Applied Chemistry Research Centre, PCSIR Labs Complex, Lahore 54000, Pakistan

^d Institute of Organic Chemistry, University of Mainz, Mainz 55099, Germany

Contents:

- 1. The absorption spectra of (a) DTP1, (b) DTP2, (c) DTP3 and (d) DTP4 in the solution with the concentration increase from 5×10^{-7} M to 5×10^{-5} M.
- 2. Calculated TDDFT Wavelengths, Exicitation energies (eV), Oscillator Strengths (*f*) and Composition in terms of Molecular Oribital Contributions of the dyes **DTP1-4**.
- 3. J-HMBC data
- 4. ¹H NMR and ¹³C NMR spectra of the all new compounds.

Figure S1. The absorption spectra of (a) **DTP1**, (b) **DTP2**, (c) **DTP3** and (d) **DTP4** in the solution with the concentration from 5×10^{-7} M to 5×10^{-5} M.

Computational detials:

The vertical excitation energies were calculated by TDDFT at MPW1K/6-31G^{**} levels.¹ because the similar permittivity of acetone to DCM/MeOH (1/1), we selected acetone to consider the solvent effect. The solvent effect was simulated by the conductor-like polarizable continuum model (C-PCM).² All the calculations were carried out with the Gaussian 09 program package.

Table S1. Calculated TDDFT Wavelengths, Excitation energies (eV), Oscillator Strengths (*f*) and Composition in terms of Molecular Orbital Contributions of the dyes **DTP1-4**.

Dye	Wavelength	<i>E</i> (eV)	Composition ^a	f
DTP1	511.1	2.43	H→L: 77.7%, H-1→L: 15.8%	1.8270
	393.0	3.15	H-1→L: 9.8%, H-1→L+1: 16.9%, H→L+1: 66.7%	0.1091
DTP2	549.8	2.25	H→L:76.8%, H-1→L: 14.6%	2.0428
	356.2	3.48	H-2→L:31.2%, H→L+2: 39.3%	0.5189
DTP3	524.3	2.36	H→L:73.3%, H-1→L: 17.2%	2.2818
	378.0	3.28	H-1→L:9.7%, H→L:10.4%, H→L+2:68.7%	0.6832
DTP4	516.1	2.40	H→L:80.9%, H-1→L:12.6	1.8848
	361.1	3.43	H-2→L:88.4%	0.1928

^a H = HOMO, L = LUMO, H-1 = HOMO-1, H-2 = HOMO-2, L = LUMO, L+1 = LUMO+1, L+2 = LUMO+2

J-HMBC data:

HMBC for compound 14

HMBC for compound 14

NMR data:

References

- 1. H. Tan, C. Pan, G. Wang, Y. Wu, Y. Zhang, Y. Zou, G. Yu and M. Zhang, *Org. Electron.*, 2013, **14**, 2795-2801.
- 2. M. Zhang, Y. Wang, M. Xu, W. Ma, R. Li and P. Wang, *Energy Environ. Sci.*, 2013, **6**, 2944.