Study of Spacer Effects in Metal-Free Organic Dyes for Visible-Light-Driven Dye-Sensitized Photocatalytic Hydrogen Production

Supplementary Information

Motonori Watanabe,*^a Hidehisa Hagiwara,^{a,b} Aoi Iribe,^b Yudai Ogata,^b Kenta Shiomi,^b Aleksandar Staykov,^a Shintaro Ida,^{a,b} Keiji Tanaka,^{a,b} and Tatsumi Ishihara*^{a,b}

^aInternational Institute for Carbon-Neutral Energy Research (WPI-FCNER), Kyushu University. 744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan.; E-mail: ishihara@cstf.kyushu-u.ac.jp ^bDepartment of Applied Chemistry, Kyushu University. 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.

mwata@i2cner.kyushu-u.ac.jp

Table of Contents	Page number
•Reflectance absorption spectra	S2
• Absorption spectra of dyes on TiO ₂ film in THF and at air conditions	S2
• Cyclic voltammograms of 1–3	S2
• Water splitting at 420 nm	S3
Time-resolved absorption spectra	S3-S4
Computation result	<i>S</i> 5
• ¹ H and ¹³ C NMR spectra	S6~S12

Reflectance Absorption spectra

Fig. S1. Reflectance absorption spectra of before dye loading TiO_2 -Pt particle ($TiO_2(Pt)$), and after dye loading TiO_2 -Pt particles (1- $TiO_2(Pt)$, 2- $TiO_2(Pt)$, 3- $TiO_2(Pt)$).

Absorption spectra of dyes on TiO₂ film

Fig. S2. Absorption spectra of dyes on TiO₂ film in THF and at air conditions. (a): 1@TiO₂, (b): 2@TiO₂, and (c): 3@TiO₂.

Cyclic voltammograms

Fig. S3. Cyclic voltammograms of 1-3 in 0.1 M Bu₄NPF₆-containing THF solutions. The scan rate was 100 mV/s.

Water splitting at 420 nm

Fig. S4. Photocatalytic activities of dyes 1–3 in water splitting reactions at single wavelength of 420 nm (7.36 mW/cm²). Reaction conditions: 10 vol% aqueous TEA (10 mL), 33.0 mg TiO₂/dye/Pt catalyst, pH = 7.0, the reaction surface area was 17.34 cm².

Table S1. The the quantum efficiency for hydrogen conversion of water with dyes 1-3 on TiO₂

Dyes	Reaction time (min.) ^a	Amount of H_2 (µmol)	Φ ^b (%)
1	1440	6.37	0.03
2	1440	299.9	1.46
3	1440	301.1	1.65

^a 420 nm (7.36 mW/cm²) of single wavelength was used, the reaction surface area were 17.34 cm². ^b Estimated by eq. (1) in main text.

Time- Resolved Absorption Spectra

Fig S5. Time-resolved absorption spectra of dye **3** in acetonitrile solution.

Fig. S6. Time-resolved absorption spectra of dye 1 on TiO_2 film (left) and dye 2 on TiO_2 film (right).

Fig. S7. Analysed results of curve fitting data for (top) dye **1** on TiO_2 film with single exponential decay fitting, (middle) dye **2** on TiO_2 film with triple exponential decay fitting, and dye **3** with on TiO_2 film with triple exponential decay fitting.

Computation Result

Fig. S8. DFT BP86/def-sv(p) optimized structures of dyes $1-3@(TiO_2)_{82}$. The extended parts indicated (a) monodentate with carboxylate type coordination structure of dye 1 on TiO2, (b) biadentate with carboxylate coordination type structure of dye 2 structure TiO₂, and (c) biadentate with carboxylate coordination type structure of dye 3 structure TiO₂.

¹H and ¹³C NMR spectra

Figure S10. ¹³C NMR of **5**

Figure S12. ¹³C NMR of **6**

Figure S14. ¹³ C NMR of 8

Figure S16. ¹³C NMR of **9**

Figure S18. ¹³C NMR of **10**

Figure S20. ¹³C NMR of **1**

Figure S22. ¹³C NMR of **2**

Figure S24. ¹³C NMR of **3**