Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supplementary Materials

Hierarchical core/shell meso-ZSM-5@mesoporous aluminosilicate-supported Pt

nanoparticles for bifunctional hydrocracking

Darui Wang, Le Xu, Peng Wu*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department

of Chemistry, East China Normal University, North Zhongshan Rd. 3663, Shanghai

200062, P. R. China

E-mail: pwu@chem.ecnu.edu.cn

Tel/Fax: 86-21-62232292

Fig. S1 TEM image of core-shell structured $MZ_{AT0.2-PI0.02}$ @MSA, showing a uniform core-shell structure with a shell thickness of 150 nm.

Fig. S2 Dependence of product yield on NaOH concentration for MZ_x samples (a) and core-shell structured composite materials MZ_x@MSA (b). The yield is defined as grams of solid after workup per gram of ZSM-5 used. Circled points represent $MZ_{AT0.2-PI0.02}$ and $MZ_{AT0.2-PI0.02}$ @MSA both synthesized by desilication with 0.2 M NaOH in the presence of piperidine.

No.	Samples	Si/Al ^a	Q ^b (mmol g ⁻¹)		
			Weak	Strong	Total
1	ZSM-5	38	0.19	0.28	0.47
2	MZ _{AT0.2} -PI 0.02	28(63°)	0.26	0.24	0.50
3	MZAT0.2-PI0.02@MSA	36	0.14	0.21	0.35
4	MZAT0.2-PI0.02&MSA	35	0.14	0.22	0.36
5	MSA	61	0.06	-	0.06

Table S1 Acidity properties and Si/Al molar ratios of different samples

^a Si/Al molar ratios measured by ICP. ^b Acidity determined by NH₃-TPD

measurement. ^cThe Si/Al molar ratio of the filtrate obtained from $MZ_{AT0.2-PI0.02}$.

Fig. S3 XRD pattern (A) and FT-IR spectrum (B) of the MSA material. The pure Alcontaining mesoporous silica was self-assembled from the filtrate of ZSM-5 desilication.

Fig. S4 ²⁷Al MAS NMR spectra of ZSM-5 (a), MZ_{AT0.2-PI0.02} (b), MZ_{AT0.2-PI0.02}@MSA (c).

Fig. S5 The dependence of *n*-hexadecane conversion on space velocity in the hydrocracking over Pt/ZSM-5 (a) and Pt/MZ_{AT0.2-PI0.02}@MSA (b). Reaction conditions: catalyst, 0.1 g; WHSV, $1 \sim 16.2 \text{ h}^{-1}$; H₂:C₁₆ molar ratio, 35; temperature, 573 K; atmospheric pressure. The WHSV was varied by changing the flow rate of C₁₆ from 0.1 to 1.62 g h⁻¹.

Fig. S6 The dependence of product selectivity on the *n*-hexadecane conversion of hydrocracking over Pt/ZSM-5 (A) and Pt/MZ_{AT0.2-PI0.02}@MSA (B). (a) $C_1 - C_4$ selectivity (a), (b) $C_5 - C_{11}$ selectivity, and $C_{12} - C_{15}$ selectivity. Reaction conditions: catalyst, 0.1 g; WHSV, 1 ~ 16.2 h⁻¹; H₂:C₁₆ molar ratio, 35; temperature, 573 K; atmospheric pressure. The WHSV was varied by changing the flow rate of C_{16} in the range of 0.1 - 1.62 g h⁻¹.

Fig. S7 The dependence of *n*-hexadecane conversion in the hydrocracking of over Pt/ZSM-5 (a) and Pt/MZ_{AT0.2-PI0.02}@MSA (b). Reaction conditions: catalyst, 0.1 g; WHSV, 7.7 h⁻¹; H₂:C₁₆ molar ratio, 35; H₂ flow rate, 45 mL min⁻¹; temperature, 533 ~ 653 K; atmospheric pressure.

Fig. S8 The dependence of product selectivity on the *n*-hexadecane conversion of hydrocracking over Pt/ZSM-5 (A) and Pt/MZ_{AT0.2-PI0.02}@MSA (B). (a) $C_1 - C_4$ selectivity (a), (b) $C_5 - C_{11}$ selectivity, and $C_{12} - C_{15}$ selectivity. Reaction conditions: catalyst, 0.1 g; WHSV, 7.7 h⁻¹; H₂:C₁₆ molar ratio, 35; H₂ flow rate, 45 mL min⁻¹; temperature, 533 ~ 653 K; atmospheric pressure.