Supporting Information

Directly Coat TiO₂ on Hydrophobic NaYF₄:Yb,Tm Nanoplates and Regulate Their Photocatalytic Activities with the Core Size

Wankui Su,^{ab} Mengmeng Zheng,^a Lei Li,^b Kun Wang,^b Ru Qiao, *^a Yijun Zhong,^a Yong Hu,^a and Zhengquan Li*^{ab}

^{*a*}Institute of Physical Chemistry and ^{*b*}Department of Materials Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China

Experimental

Synthesis of NaYF₄:Yb,Tm nanoplates. NaYF₄:25%Yb, 0.3%Er nanoplates of 50 nm in diameter were synthesized following this protocol: YCl₃ (0.747 mmol), YbCl₃ (0.25 mmol) and TmCl₃ (0.003 mmol) were mixed with 4 mL oleic acid (OA) and 16 mL octadecene (ODE) in a 50 ml flask. The solution was then heated to 160 °C to form a homogeneous solution and cooled down to room-temperature. 10 mL of methanol solution containing NaOH (2.5 mmol) and NH₄F (4 mmol) were added into the flask and slowly heated to evaporate methanol. After complete removal of methanol, the flash was degassed at 100 °C for 10 min, heated to 300 °C and maintained at this temperature for 1 h under argon atmosphere. After the solution was cooled down naturally, NaYF₄:Yb,Tm nanoplates were precipitated from the solution with ethanol. Synthesis of NaYF₄:Yb,Tm nanoplates with other sizes were performed with a similar protocol by varying the reaction time and amount of oleic acids. Detailed parameters are list as follows: 1 h and 3 mL OA for 100 nm nanoplates.

Scheme S1. Schematic illustration of the preparation of CTAB-modified NaYF₄:Yb,Tm nanoplates with reverse-micelle method.

Figure S1. TEM images of 30 nm NaYF₄:Yb,Tm nanoplates at different synthetic stages: (A) primitive nanoplates; (B) CTAB-modified; (C) after TiO₂ coating and annealing.

Samples	κ under different irradiation bands		
	UV	NIR	UV/VIS/NIR
P25	0.04292	0	0.04306
NP30	0.0517	0.00465	0.05751
NP50	0.08342	0.00759	0.10722
NP100	0.05103	0.00522	0.06714
NP130	0.04363	0.00501	0.05492

Table S1. Apparent rate constants of P25 and NaYF₄:Yb,Tm@TiO₂ NPs with varied core sizes under different irradiation bands. Above data indicate that NPs with 50 nm core size have the best photocatalytic performance in each band than other samples.