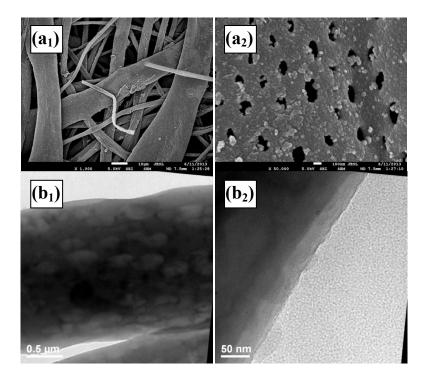
Nanocups-on-Microtubes: a Unique Host Towards High-Performance Lithium Ion Batteries

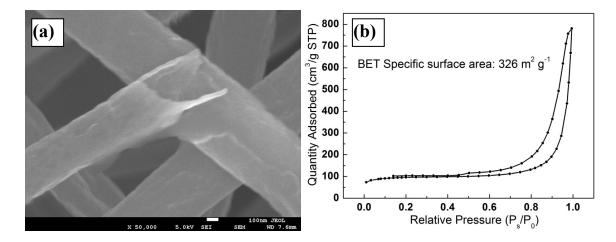
Junhua Kong,^{a, #} Chenyang Zhao,^{a, #} Yuefan Wei,^b Si Lei Phua,^a Yuliang Dong,^a Xuehong

Lu^{a, *}

^a School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue,


Singapore 639798

^b School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang


Avenue, Singapore 639798

* E-mail: <u>asxhlu@ntu.edu.sg</u>

[#] denotes equal contribution

Fig. S1. (a₁ and a₂) FESEM and (b₁ and b₂) TEM images of polydopamine (PDA)-coated PS porous nanofibers, showing the fibrous morphology as well as the successful coating.

Fig. S2. (a) The morphology and (b) Brunauer-Emmett-Teller (BET) isotherm curve of the C-PDA hollow nanofibers, indicating the BET specific area of about 326 m² g⁻¹. The C-PDA hollow nanofibers were prepared through coating PDA onto solid PS nanofibers followed by annealing. The coating and annealing condition was the same as that used to obtain C-PDA nanocups.