Supporting Information

Gel electrolyte materials formed from a series of novel low molecular mass organogelators for stable quasi-solid-state dye-sensitized solar cells

Li Tao,^{a,‡} Zhipeng Huo,^{*,a,‡} Yong Ding,^a Lu Wang,^a Jun Zhu,^a Changneng Zhang,^a Xu Pan,^a Mohammad K. Nazeeruddin,^{*,b} Songyuan Dai^{*,a,c} and Michael Grätzel^b

^aKey Laboratory of Novel Thin-Film Solar Cells, Division of Solar Energy Materials and Engineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China

^bLaboratory for Photonics and Interfaces, Institution of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland

^cState Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, P. R. China

‡ L.Tao and Z.P.Huo contributed equally to this research.

Corresponding authors

* (Z. P. Huo) zhipenghuo@163.com (+86 551 65592190).

* (S. Y. Dai) sydai@ipp.ac.cn (+86 10 61772268).

* (M. K. Nazeeruddin) mdkhaja.nazeeruddin@epfl.ch (+41 21 69 36124)

Synthesis of didodecanoylamides of a, w-alkylidenediamines

Fig.S1 ¹H NMR chemical shifts of gelator A in Chloroform-d

Lauroylchloride (0.14 mol) was added to a stirred solution of NaHCO₃ (0.13 mol) in a mixture of ether (150 mL) and water (150 mL) at 0 °C. Then, ethylenediamine (0.044 mol) was added dropwise to the above mixture during 20 min at 0 °C. The suspension was stirred at room temperature for 8 h. The resulting solid was filtrated and washed with water three times. Drying in vacuo gave a solid (15.8 g). After recrystallization from ethanol (500 mL), the production

was obtained (12.1 g, 70%) as colorless leaflets. Anal: Calcd. For: C₂₆H₅₂N₂O₂ (gelator A): C 73.53, H 12.34, N 6.60. Found: C 73.34, H 12.63, N 6.54.

N,N'-1,6-hexanediylbis-dodecanamide (gelator B)

The synthesis procedure is same to that of gelator A with lauroylchloride (0.14 mol), NaHCO₃ (0.13 mol), ether (150 mL), water (150 mL), 1,6-Hexylenediamime (0.044 mol). The production was obtained (15 g, 80%) as colorless leaflets. Anal: Calcd. For: $C_{30}H_{60}N_2O_2$ (gelator B): C 74.94; H 12.58; N 5.83. Found: C 75.30; H 12.46; N 5.94.

Fig. S2 ¹H NMR chemical shifts of gelator B in Chloroform-d

N,N'-1,5-pentanediylbis-dodecanamide (gelator C)

The synthesis procedure is same to that of gelator A with lauroylchloride (0.14 mol), NaHCO₃ (0.13 mol), ether (150 mL), water (150 mL), 1,5-Diaminopentane (0.044 mol). The production was obtained (16 g, 79%) as colorless leaflets. Anal: Calcd. For: $C_{29}H_{58}N_2O_2$ (gelator C): C 74.62; H 12.52; N 6.00. Found: C 74.69; H 12.37; N 6.24.

Fig. S3 ¹H NMR chemical shifts of gelator C in Chloroform-d

N,N'-1,9-nonanediylbis-dodecanamide (gelator D)

The synthesis procedure is same to that of gelator A with lauroylchloride (0.14 mol), NaHCO₃ (0.13 mol), ether (150 mL), water (150 mL), 1,9-Diaminononane (0.044 mol). The production was obtained (13 g, 70%) as colorless leaflets. Anal: Calcd. For: $C_{33}H_{66}N_2O_2$ (gelator D): C 75.80; H 12.72; N 5.36. Found: C 76.36; H 12.69; N 5.43.

Fig. S4 ¹H NMR chemical shifts of gelator D in Chloroform-d