Electronic Supplementary Information for

Polyaniline Nanofiber/Vanadium Pentoxide Sprayed Layer-by-Layer Electrodes for Energy Storage

Lin Shao,¹ Ju-Won Jeon² and Jodie L. Lutkenhaus²*

- Department of Chemical & Environmental Engineering, Yale University, New Haven, Connecticut. 06511
- Department of Chemical Engineering, Texas A&M University, College Station, Texas. 77843

1.	Figure S1. Effect of blow-drying time	S2	
2.	Figure S2. Effect of PANI NF concentration	S2	
3.	Figure S3. Optimized electrodes	S3	
4.	Figure S4. UV-Vis spectra	S3	
5.	Figure S5. Galvanostatic cycling data based on volume	S4	
6. NF/	Figure S6. Ragone plot of (PANI NF/V ₂ O ₅) ₃₀ spray-assisted LbL electrodes and F/V_2O_5) ₁₆ dip-assisted LbL electrodes, which is based on volume		
7.	Table S1. Parameters used for fitting of the equivalent-circuit model to the dat	S5	

Figure S1. Sample A was prepared with a blow-drying time of 30 sec; Sample B was prepared with a blow-drying time of 1 min. Both samples have 50 layer pairs.

PANI NF:0.5 mg/mL PANI NF:1 mg/mL

Figure S2. Images of PANI NF/V₂O₅ LbL electrodes prepared by spray process with different PANI NF concentrations. The numbers on top of the images are the number of layer pairs.

Figure S3. Image of PANI NF/V₂O₅ LbL electrodes after optimization of parameter settings.

Figure S4. (a) UV-Vis spectra of (PANI NF/V₂O₅)₃₀ LbL films at 2.0 V (black curve) and at 3.5 V vs Li/Li^+ (red curve).

Figure S5. Galvanostatic cycling data based on volume.

Figure S6. Ragone plot of (PANI NF/V₂O₅)₃₀ spray-assisted LbL electrodes and (PANI NF/V₂O₅)₁₆ dip-assisted LbL electrodes, which is based on volume.

30 BL	3 5V	2 75V	2V
JUBE	5.5 1	2.134	21
Y _{0CPE2}	8.57e-6	6.147e-6	3.383e-6
a _{CPE2}	0.8345	0.8497	0.84
R_2/Ω	228.2	285	350.3
Y _{0W}	134.1e-3	356.6e-6	200.0e-6
B_W	0.3841	0.9514	0.06651
Y _{0CPE1}	214.2e-12	222.3e-12	214.1e-12
a _{CPE1}	0.958	0.9566	0.9586
R_1/Ω	956.9	957.1	959.7
Y _{CPE3}	0.02343	0.02653	0.05103
a _{CPE3}	0.9335	0.9434	0.8979

 Table S1. Parameters used for fitting of the equivalent-circuit model to the data

The impedance of a CPE has the form:

$Z = (1/Y_o)/(j\omega)^{\alpha}$

When this equation describes a capacitor, the constant $Y_0 = C$ (the capacitance) and the exponent a = 1. For a constant phase element, the exponent a is less than one.

The equation for the Warburg impedance can be written as:

$$Z = (1/Y_o)/\sqrt{j\omega}$$

where

$$Y_o = 1/(\sqrt{2} \cdot \sigma)$$

If the diffusion layer is bounded, the impedance at lower frequencies no longer obeys the equation above. Instead, we get the form:

$$Z = [(1/Y_o)/\sqrt{(j\omega)}] \tanh [B\sqrt{j\omega}]$$

with

$$B = \delta / D^{1/2}$$

d = Nernst diffusion layer thickness (cm) D = an average value of the diffusion coefficients of the diffusing species (cm²/s)