Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting information

New zinc and bismuth doped glass sealants with substantially suppressed boron

deposition and poisoning for solid oxide fuel cells

Kongfa Chen,^{ab} Lihua Fang,^a Teng Zhang,^{a,*} San Ping Jiang^{b,*}

^aCollege of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian

350108, China

^bFuels and Energy Technology Institute & Department of Chemical Engineering,

Curtin University, Perth, WA 6102, Australia

Experimental

Infrared spectra of glass powders were recorded at room temperature in the range 400-1800 cm⁻¹ using a spectrometer (FT-IR, model NiCOLET5700).

Results and Discussion

FT-IR results of the glass samples:

^{*}Corresponding author. Tel.: +61 8 9266 9804; fax: +61 8 9266 1138; Tel.: +86 591 22866540; fax: +86 591 22866537.

Email address: s.jiang@curtin.edu.au (S.P. Jiang); teng_zhang@fzu.edu.cn (T. Zhang).

Figure S1. (a) FT-IR spectra of quenched glass samples and deconvoluted spectra for (b) G0, (c) GB, and (d) GZ.

Table S1.	The assignme	nts of vibratio	nal modes in	FT-IR spectra
Table SI.	The assignme	ins of vibration	iai moues m	1 ¹ -in specia

Wave number (cm ⁻¹)	FT-IR Assignment		
423~450	Overlapped bending modes of Si-O-Si and B-O-B linkages. ^{1,2}		
475~487	Si-O-Si, Si-O-B isolated vibrations. ³		
440~520	Deformation vibrational modes of Si-O-Si links. ⁴		
440~470	Bridging oxygen bending in the Si network. ⁵		
480~488	Si-O-Si rocking. ²		
498~508	Stretching vibrations of Bi-O bonds in strongly distorted vibrations		
	[BiO ₆] units. ⁵⁻⁷		
554	Stretching vibrations of [ZnO ₄] units. ^{1, 8}		
720~780	Oxygen bridges between one tetrahedral and one trigonal boron		
	atom. ⁴		
840	Stretching vibrations of the non-bridging oxygens (NBOs) of [BO ₄]		
	groups. ⁸		
897~909	Asymmetric vibration of B–O–Si units. ³		
995~1014	Stretching vibrations of B-O bonds in [BO4] units from tri-, tetra-		
	and pentaborate groups. ⁶		
1012~1022	Stretching vibrations modes of [SiO ₄] and [BO ₄] units. ²		
917~1030	B-O stretching vibrations of [BO ₄] tetrahedra. ⁸		
1200~1300	B-O ⁻ non-bridging stretching in [BO ₃]. ^{5, 7}		
	Symmetric stretching relaxation of B-O band of triangle		
1396~1450	[BO ₃] units. ^{2, 4, 9}		
~1650			
	The [OH] mode of molecular water. ⁹		

Wave number (cm ⁻¹)	Vibration mode
208~254	Bi–O "breathing" in [BiO ₃] pyramidal like unit. ¹⁰
250~254	Zn–O tetrahedral bending vibrations of [ZnO ₄] units. ^{11, 12}
~360	Rocking motion of silicate units and/or motion of cationic polyhedral. ¹³
350~375	Stretching Bi–O–Bi vibration of the distorted [BiO ₆] octahedral units. ^{14, 15}
467~508	Q ³ units and/or mode of B–O–B, B–O–Si, and Si–O–Si linkages. ¹⁶
572	vibration of [BO ₄]. ¹⁴
620~647	Si-O symmetric stretching vibrations in various silicate units (mainly Q ² units). ^{13, 16}
677~ 704	Q ¹ units along with some metaborate units. ¹⁶
700-709	B-O-B bending in [BO ₃]. ⁵
~780	[BO ₄] tetrahedral units with non-bridging oxygen atoms . ^{6, 13, 16}
850~875	Q ⁰ units. ¹⁶
850	Q ⁰ group or structural defects Al-O-Si. ¹⁷
890~926	Bi–O ⁻ stretching vibration [BiO ₃]. ⁵
943~1003	Q ² units. ^{13, 16, 17}
950-1000	Stretching motion of the Q ² units. ^{13, 16, 17}
1050~1105	Q ³ units. ^{13, 16}
1143~1180	Q ⁴ units . ¹⁶
1200~1450	Vibrations of B-O ⁻ bond in [BO ₃] units. ¹⁴

Table S2. The assignments of vibrational modes in Raman spectra.

XRD results of glass samples heat-treated at 750°C for 2 h:

Figure S2. XRD patterns of glass samples after the heat-treatment at 750°C for 2 h.

Electrochemical performance of a 6-µm-thick LSCF cathode:

Figure S3. (a) Electrochemical impedance curves and (b) plots of R_E and R_{Ω} for the O₂ reduction reaction on a LSCF cathode under cathodic current passage at 200 mA cm⁻² and 700°C for 20 h in the presence of G0 glass. The thickness of the LSCF electrode was 6 μ m.

References:

- 1. K. Annapurna, M. Das, P. Kundu, R. Dwivedi and S. Buddhudu, *Journal of Molecular Structure*, 2005, **741**, 53-60.
- A. Rupesh Kumar, T. Rao, K. Neeraja, M. Rami Reddy and N. Veeraiah, *Vibrational Spectroscopy*, 2013, 69, 49-56.
- T. Rao, A. Rupesh Kumar, K. Neeraja, N. Veerajah and M. Rami Reddy, *Journal of Alloys* and Compounds, 2013, 557, 209-217.
- 4. R. Kaur, S. Singh and O. Pandey, *Solid State Communications*, 2014, 188, 40-44.
- 5. X. Zhu, C. Mai and M. Li, Journal of Non-Crystalline Solids, 2014, 388, 55-61.
- R. Vijaya Kumar, P. Gayathri Pavani, B. Ramesh, M. Shareefuddin and K. Siva Kumar, Optical Materials, 2013, 35, 2267-2274.
- 7. S. C. I. Ardelean, Dorina Rusu, *Physica B: Condensed Matter*, 2008, 403, 3682–3685.
- M. Gaafar, N. El-Aal, O. Gerges and G. El-Amir, *Journal of Alloys and Compounds*, 2009, 475, 535-542.
- 9. D. Saritha, Y. Markandeya, M. Salagram, M. Vithal, A. Singh and G. Bhikshamaiah, *Journal* of Non-Crystalline Solids, 2008, **354**, 5573-5579.
- 10. K. Knoblochova, H. Ticha, J. Schwarz and L. Tichy, *Optical Materials*, 2009, **31**, 895-898.
- 11. S. Bale, N. Rao and S. Rahman, *Solid State Sciences*, 2008, **10**, 326-331.
- 12. S. Bale, S. Rahman, A. Awasthi and V. Sathe, *Journal of Alloys and Compounds*, 2008, **460**, 699-703.
- 13. B. Tiwari, A. Dixit and G. Kothiyal, *International Journal of Hydrogen Energy*, 2011, **36**, 15002-15008.
- 14. H. Fan, G. Gao, G. Wang and L. Hu, Solid State Sciences, 2010, 12, 541-545.
- 15. T. Inoue, T. Honma, V. Dimitrov and T. Komatsu, Journal of Solid State Chemistry, 2010,

183, 3078-3085.

- 16. K. Lu and M. Mahapatra, *Journal of Applied Physics*, 2008, **104**, 074910.
- 17. N. Dantas, W. Ayta, A. Silva, N. Cano, S. Silva and P. Morais, *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 2011, **81**, 140-143.