Supplementary Information

In situ solution plasma synthesis of nitrogen-doped carbon nanoparticles as metal-free electrocatalysts for the oxygen reduction reaction

Gasidit Panomsuwan,** Satoshi Chiba, * Youta Kaneko,* Nagahiro Saito^{bcd} and Takahiro Ishizaki**d

^aDepartment of Materials Science and Engineering, Faculty of Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan

^b Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

^c Green Collaborative Research Center, Nagoya University, Nagoya 464-8603, Japan

^dCore Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 333-001, Japan

*Co-corresponding author: Takahiro Ishizaki

Address: Department of Materials Science and Engineering, Faculty of Engineering, Shibaura Institute of

Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan

Tel: +81-3-5859-8115

Fax: +81-3-5859-8101

E-mail: i036050@sic.shibaura-it.ac.jp; g.panomsuwan@gmail.com; ishizaki@sic.shibaura-it.ac.jp

^{*}Corresponding author: Gasidit Panomsuwan

Fig. S1 Particle size distribution of NCNP-70 deduced from bright-field TEM image.

Fig. S2 XPS survey spectra of CNP, NCNP-30, NCNP-50, and NCNP-70. The vertical dashed line indicates the position of N 1s peak.

Fig. S3 High-resolution XPS spectra of all catalysts: (a) C 1s, (b) N 1s and (c) O 1s.

Sample	XPS N1s spectra					
	Pyridinic-N (N _P)	Pyrrolic-N (N _{PR})	Graphitic-N (N _G)	Pyridinic N-oxide (N _{OX})		
NCNP-30	41.1%	10.4%	40.3%	8.2%		
NCNP-50	43.7%	8.5%	42.3%	5.5%		
NCNP-70	38.9%	8.7%	46.6%	5.8%		

Table S1 Relative amount of different nitrogen bonding configurations obtained from the qualitative analysis of high-resolution XPS N 1s spectra of NCNP-30, NCNP-50, and NCNP-70 in Fig. S3b.

Fig. S4 CV curves of the ORR for (a) CNP, (b) NCNP-30, (c) NCNP-50, and (d) NCNP-70 modified on GC electrodes in a 0.1 M KOH solution saturated with N₂ (black dashed line) and O₂ (blue solid line).

Fig. S5 LSV curves of the ORR for all catalysts in an O_2 -saturated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹ and different rotation speeds from 225 to 2500 rpm: (a) CNP, (b) NCNP-30, (c) NCNP-50, and (d) NCNP-70.

Fig. S6 K–L plots at potentials from –0.4 to –0.6 V on the basis of LSV data in Fig. S5 of (a) CNP, (b) NCNP-30, (c) NCNP-50, and (d) NCNP-70.

Fig. S7 Electron transfer number (*n*) obtained from the K–L plots (Fig. S6) as a function of potential from -0.4 to -0.6 V: (a) CNP, (b) NCNP-30, (c) NCNP-50, and (d) NCNP-70.

_	E _{onset} (V vs. Ag/AgCl)	$J_{\rm K}$ (mA cm ⁻²)	n _{K-L}	<i>n</i> _{RRDE}	HO ₂ ⁻ yield (%)
GC	-0.31	7.87	2.38	2.34	83.0
20%Pt/C	-0.09	19.6	4.05	3.85	7.65
CNP	-0.22	10.8	2.42	2.40	81.4
NCNP-30	-0.21	13.9	2.56	2.62	68.6
NCNP-50	-0.20	14.1	2.65	2.71	64.9
NCNP-70	-0.17	14.5	2.80	2.86	59.5

Table S2 Electrochemical results of bare GC electrode, 20%Pt/C, CNP, NCNP-30, NCNP-50, and NCNP-70 obtained at a potential of -0.4 V. The onset potential (E_{onset}) is determined from LSV-RRDE curve.

Fig. S8 Comparative CV curves with (solid line) and without the introduction of 3 M methanol (dashed line) of NCNP-70 (b) and 20 wt% Pt/C.