Electronic Supporting Information

Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings

Hitesh Khandelwal,^{*ab*} Roel C. G. M. Loonen,^{*c*} Jan L. M. Hensen,^{*c*} Albertus P. H. J. Schenning^{**a*} and Michael G. Debije^{**a*}

^a Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands,

^b Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands

^c Unit Building Physics and Services, Department of the Built Environment, Eindhoven University of Technology, Den Dolech 2, 5600 MB Eindhoven, The Netherlands

Fig. S1 Cell transmission spectra of right-(film 2) and left-(film 4) handed films upon varying the temperature from 20 °C to 100 °C.

Fig.S2 Schematic representation for the (a) preparation of right- (film 2) and left- (film 4) handed films superimposed on each other (approach 1). (b) Combination of halfwave plate inserted between two left-handed Ch-LC films (film 4).

Fig. S3 Angular dependent cell transmission spectra of (a) right-(film 2) and (b) left-(film 4) handed films.

Fig. S4 Simulated decrease in interior maximum temperature as a function of the day of the year for right- or left-handed cholesteric polymer films for an office room in (a) London, UK and (b) Chicago, USA (insets show the temperature decrease on a selected day of June 24th).