Electronic Supplementary Information for

Simple Pyrolysis of Cobalt Alginate Fibres into Co₃O₄/C Nano/Microstructures for High-performance Lithium Ion Battery Anode

Daohao Li^{*a*}, Dongjiang Yang^{*,*a,b*} Xiaoyi Zhu^{*a*}, Dengwei Jing^{*c*}, Yanzhi Xia^{*,*a*}, Quan Ji^{*a*}, Rongsheng Cai^{*a*}, Hongliang Li^{*a*} and Yanke Che^{*,*d*}

^{*a*}Collaborative Innovation Centre for Marine Biomass Fibres, Materials and Textiles of Shandong Province; College of Chemical and Environmental Engineering, Qingdao University, Qingdao, P R China.

^bQueensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan, Brisbane, Queensland 4111, Australia.

^cInternational Research Centre for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

^dInstitute of Chemistry, The Chinese Academy of Sciences, Beijing, PR China.

*To whom correspondence should be addressed. E-mail: <u>d.yang@qdu.edu.cn;</u> <u>qdxyzh@qdu.edu.cn; ykche@iccas.ac.cn</u> Estimation of the relative volumetric energy density (D_{ve})

It is known that the relative volumetric energy density (D_{ve}) of the Co₃O₄-CF electrode can be calculated as follows:

$$D_{ve} = C_v \cdot U$$
$$C_v = \frac{C}{V} = \frac{C_s \cdot M}{\frac{M}{D_t}} = C_s \cdot D_t$$

C_v: volume capacity

U: voltage

C: the capacity of the active material

V: the volume of the active material

C_s: the reversible capacity of active material

M: the mass of the active material

Dt: the tap density

Obviously, D_{ve} is proportional to volume capacity (C_v). So in this work, we estimated the D_{ve} of Co₃O₄-CF by using C_v. Given that the tap density (D_t) and the reversible capacity (C_s) of the Co₃O₄-CF is 1.51 g cm⁻³ and 780 mAh g⁻¹, respectively, C_v value of the Co₃O₄-CF is 1178 mAh cm⁻³.

 1. Spinning solution tank of 5 wt % alginate sodium
 2. Polypropylene filter of 10 μm
 3. Metering pump

 4. Spinneret
 5. Coagulation bath of CaCl₂
 6. Filament roller
 7. Stretch bath
 8. Stretch roller

Fig. S1 Wet spinning process for the preparation of Ca-AF.

Fig. S2 The TGA curve of the Co₃O₄-CF in air.

TGA measurement showed the thermal decomposition of Co_3O_4 -CF with a heating rate of 10 °C min⁻¹ in air (Fig. S2). The Co_3O_4 -CF began to decompose at 180 °C and rapidly decomposed when the temperature was higher than 870 °C, and the process of decomposition for the sample was finished when the temperature was arised to 950 °C. The whole process of thermal decompositions for the Co_3O_4 -CF is the result of decomposition of carbon, and the residue is Co_3O_4 , which determines a mass ratio of 85.5:14.5 (Co_3O_4 NPs:carbon) of the two materials in the Co_3O_4 -CF.

Fig. S3 The FTIR spectra of the samples.

FTIR spectra of the samples are presented in Fig. S3. For Ca-AF and Co-AF, the absorption bands at 1619 and 1403 cm⁻¹ were due to the respective asymmetric and symmetric stretching vibrations of carboxylate anions, and the absorption peak at 2915 cm⁻¹ can be assigned to the C-H asymmetric stretching vibration. It is illustrated that the two precursors own same functional groups. For commercial Co₃O₄ and Co₃O₄-CF, the absorption bands at 663 and 570 cm⁻¹ were the Co-O stretching vibration of Co₃O₄, which illustrated that the Co₃O₄-CF, after calcination in N₂ atmosphere and subsequent oxidation process for Co-AF, the Co²⁺ cations convert to Co₃O₄ species.

Fig. S4 The cycling performance of commercial Co_3O_4 at 89 mAh g⁻¹.