SUPPORTING INFORMATION for

A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis

Ludovic Jourdin^{*a,b}, Stefano Freguia^{a,b}, Bogdan C. Donose^{a,b}, Jun Chen^c, Gordon G. Wallace^c, Jurg Keller^a, and Victoria Flexer^{*a,‡}

^{*a*} The University of Queensland, Advanced Water Management Centre, Level 4, Gehrmann Building (60), Brisbane, QLD 4072, Australia

^{*b*} Centre for Microbial Electrosynthesis, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia.

^c ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, NSW, 2522, Australia

‡ Present address: Department of Analytical Chemistry, Ghent University, Krijgslaan 281 S12, Ghent 9000 BELGIUM

*Dr Victoria Flexer: victoria.flexer@ugent.be

*Ludovic Jourdin: <u>l.jourdin@awmc.uq.edu.au</u>

Figure S1: Schematic illustration of a microbial electrosynthesis cell – carbon dioxide microbial reduction to acetate.

Figure S2: Cyclic voltammogram of ferricyanide on NanoWeb-RVC and non-modified RVC. Experiments performed in a standard three-electrode cell with a 0.1M NaNO₃ solution containing 10mM ferricyanide at a scan rate of 5 mV s⁻¹.