Electronic Supplementary Information

Influence of moiety sequence on the performance of small molecular photovoltaic materials

Long Liang,^a Jin-Tu Wang,^a Xuan Xiang,^b Jun Ling,^c Fu-Gang Zhao^b and Wei-Shi Li^{*ab}

^{*a*} Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling road, Shanghai 200032, China.

^b Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.

^c Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Contents:

Device optimization for the OSCs based on BDT(ThBTTh)₂ and Table S1 BDT(BTTh₂)₂. TGA curves of **BDT(ThBTTh)**₂ and **BDT(BTTh**₂)₂ Fig. S1 The second heating and cooling DSC curves of BDT(ThBTTh)₂ and Fig. S2 BDT(BTTh₂)₂. Cyclic voltammograms of **BDT(ThBTTh)**₂ and **BDT(BTTh**₂)₂ films Fig. S3 Fig. S4 The OFET transfer curves of (a) **BDT(ThBTTh)**₂ and (b) BDT(BTTh₂)₂ measured with a device structure of Si/SiO₂/OTS/active layer/Au. The SCLC fitting curves of **BDT(ThBTTh)**₂ and **BDT(BTTh**₂)₂ Fig. S5 measured with a device structure of ITO/PEDTO:PSS/active layer/Au. ¹H NMR spectrum of compound **1**. Fig. S6 13 C NMR spectrum of compound 1. Fig. S7 ¹H NMR spectrum of compound **2**. Fig. S8 13 C NMR spectrum of compound 2. Fig. S9 ¹H NMR spectrum of compound **3**. **Fig. S10** 13 C NMR spectrum of compound **3**. **Fig. S11** ¹H NMR spectrum of compound **BDT(ThBTTh)**₂. **Fig. S12** Fig. S13 MALDI-TOF mass spectrum of **BDT(ThBTTh)**₂. **Fig. S14** ¹H NMR spectrum of compound **4**. ¹H NMR spectrum of compound **5**. **Fig. S15** ¹³C NMR spectrum of compound 5. **Fig. S16** ¹H NMR spectrum of compound **BDT(BTTh₂)**₂. **Fig. S17** MALDI-TOF mass spectrum of compound **BDT(BTTh**₂)₂. **Fig. S18**

Compound	Weight	Curt	Additive ^b	T	Vec	Jsc	FF	PCE
	Ratio to	(mg mL^{-1})	(amount)	$^{-1}$ annealing	(\mathbf{V})	$(mA \text{ cm}^{-2})$	(%)	(%)
	PC ₆₁ BM		(uniounit)	(C)	(•)	(mirtem)	(70)	(70)
BDT(ThBTTh)2	3:1	30	-	120	0.90	5.97	53.7	2.88
	1.5:1	30	-	120	0.91	7.94	56.8	4.10
	1:1	30	-	100	0.86	7.57	64.1	4.19
	1:1	30	-	120	0.89	9.33	54.5	4.53
	1:1	40	-	120	0.86	9.07	54.7	4.28
	1:1	30	-	140	0.87	3.85	45.9	1.53
	1:2	30	-	120	0.90	4.92	60.0	2.65
	1:3	30	-	120	0.87	2.24	65.2	1.27
	1:1	30	DIO (0.25% in v/v)	120	0.84	6.30	42.4	2.25
	1:1	30	DIO (0.5% in v/v)	120	0.21	3.77	26.1	0.21
	1:1	30	PDMS (0.2 mg mL^{-1})	120	0.88	8.57	55.7	4.19
BDT(BTTh ₂) ₂	3:1	30	-	120	0.53	3.36	36.7	0.65
	1.5:1	30	-	120	0.76	3.19	38.6	0.93
	1:1	30	-	80	0.74	1.96	38.0	0.55
	1:1	30	-	100	0.74	4.59	36.7	1.25
	1:1	20	-	120	0.63	4.52	35.8	1.02
	1:1	30	-	120	0.82	4.74	40.5	1.58
	1:1	40	-	120	0.76	3.73	37.9	1.08
	1:1	30	-	140	0.53	2.73	28.8	0.42
	1:2	30	-	120	0.62	2.81	33.7	0.59
	1:3	30	-	120	0.54	1.08	33.2	0.19
	1:1	30	DIO (0.25% in v/v)	120	0.51	3.45	33.2	0.59
	1:1	30	DIO (0.5% in v/v)	120	0.33	0.75	28.5	0.07
	1:1	30	PDMS (0.2 mg mL^{-1})	120	0.74	4.13	40.9	1.26

Table S1 Device optimization for the OSCs based on BDT(ThBTTh)₂ and **BDT(BTTh₂)**^{*a*}

^{*a*} Other conditions: annealing for 10 min, spin coated at 1000 rpm for 30 s ^{*b*} DIO: 1,8-diiodoctane, PDMS: polydimethylsiloxane.

Fig. S1 TGA curves of **BDT(ThBTTh)**₂ and **BDT(BTTh**₂)₂, at a heating rate of 10 $^{\circ}$ C min ⁻¹ under N₂.

Fig. S2 The second heating and cooling DSC curves of **BDT(ThBTTh)**₂ and **BDT(BTTh**₂)₂, at a heating and cooling rate of 10 $^{\circ}$ C min⁻¹ under N₂.

Fig. S3 Cyclic voltammograms of **BDT(ThBTTh)**₂ and **BDT(BTTh**₂)₂ films. The film samples were casted from chlorobenzene solutions onto glassy carbon electrodes and measured in CH₃CN containing 0.1 M Bu₄NPF₆ at a scan rate of 50 mV s⁻¹.

Fig. S4 The OFET transfer curves of (a) $BDT(ThBTTh)_2$ and (b) $BDT(BTTh_2)_2$ measured with a device structure of Si/SiO₂/OTS/active layer/Au.

Fig. S5 $\ln J - \ln V$ and their SCLC fitting curves of BDT(ThBTTh)₂ and BDT(BTTh₂)₂ blend films with PC₆₁BM (1/1, w/w) under different thicknesses.

Fig. S6 ¹H NMR spectrum of compound 1 in $CDCl_3$ at room temperature.

Fig. S7 ¹³C NMR spectrum of compound **1** in CDCl₃ at room temperature.

Fig. S8 ¹H NMR spectrum of compound **2** in CDCl₃ at room temperature.

Fig. S9 13 C NMR spectrum of compound **2** in CDCl₃ at room temperature.

Fig. S10 ¹H NMR spectrum of compound **3** in CDCl₃ at room temperature.

Fig. S11 13 C NMR spectrum of compound 3 in CDCl₃ at room temperature.

Fig. S12 ¹H NMR spectrum of **BDT(ThBTTh)**₂ in CD_2Cl_4 at 110 °C.

Fig. S13 MALDI-TOF mass spectrum of BDT(ThBTTh)₂.

Fig. S14 ¹H NMR spectrum of compound **4** in CDCl₃ at room temperature.

Fig. S15 ¹H NMR spectrum of compound **5** in CDCl₃ at room temperature.

Fig. S16 13 C NMR spectrum of compound 5 in CDCl₃ at room temperature.

Fig. S17 ¹H NMR spectrum of compound **BDT(BTTh₂)**₂ in CD₂Cl₄ at 110 $^{\circ}$ C.

Fig. S18 MALDI-TOF mass spectrum of compound BDT(BTTh₂)₂.