Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

One-step synthesis of Co-doped Zn₂SnO₄-graphene-carbon nanocomposites with improved

lithium storage performances

Hui-Yuan Wang, Bang-Yong Wang, Jin-Kui Meng, Jin-Guo Wang* and Qi-Chuan Jiang

Key Laboratory of Automobile Materials of Ministry of Education & School of Materials Science and

Engineering, Nanling Campus, Jilin University, No. 5988 Renmin Street, Changchun 130025, PR China

* Corresponding authors: Tel/Fax: +86 431 8509 4699

E-mail: wanghuiyuan@jlu.edu.cn; jgwang@jlu.edu.cn

Figure S1. Survey XPS spectra of Co-ZTO-G-C, Co-ZTO-G and ZTO-G-C nanocomposites.

Figure S2. FESEM images of (a) and (d) Co-ZTO-G-C, (b) and (e) Co-ZTO-G and (c) and (f) ZTO-G-

C nanocomposites.

Table S1 Atomic and weight ratios of Zn, Sn and Co elements of Co-ZTO-G-C nanocomposites.

Element	Weight %	Atomic %
Zn (K)	41	53
Sn (K)	52	37
Co (K)	7	10

Figure S3. N₂ adsorption-desorption isotherm loop and pore-size distribution plots of (a) and (d) Co-ZTO-G-C, (b) and (e) Co-ZTO-G and (c) and (f) ZTO-G-C nanocomposites.

Table S2 The N_2 adsorption-desorption test results of three nanocomposites.

Composites	Specific surface	Pore volume	Doro gizo (nm)	
	area (m ² /g)	(cm^3/g)	Pole size (IIII)	
Co-ZTO-G-C	144.5	0.188	5.20	
Co-ZTO-G	118.9	0.175	5.88	
ZTO-G-C	150.9	0.220	5.84	

Table S3 Kinetic parameters of Co-ZTO-G-C, Co-ZTO-G and ZTO-G-C electrodes.

Sample	$R_{e}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$	i ⁰ (mA cm ⁻²)
Co-ZTO-G-C	4.9	47.4	3.76 × 10 ⁻⁵
Co-ZTO-G	6.7	112.9	1.58×10^{-5}
ZTO-G-C	5.4	72.4	2.46×10^{-5}

Note: The exchange current density i^0 is calculated according to the equation of $i^0 = RT/ nFR_{ct}$, where R is the gas constant (8.314 J mol⁻¹ K⁻¹), T is the absolute temperature (298.15 K), n is the number of transferred electrons, F is the Faraday constant (96500 C mol⁻¹).