Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

pH-Controlled growth of ultrathin iron vanadium oxide (FeV3O8) nanoplatelets with high visible-light photo-catalytic activity

Lin-fei Zhang,^{‡,a,b} Juan Zhou,^{‡,a} and Chun-yang Zhang^{*,a}

^a Single-Molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

^b Department of Materials Science and Engineering, South University of Science and Technology

of China, Shenzhen, Guangdong 518055, China

‡ These authors contributed equally.

* To whom correspondence should be addressed. E-mail: zhangcy@siat.ac.cn

Fig. S1 Stability of ultrathin FeV_3O_8 nanoplatelets as a function of PVP. (a) The product synthesized in the absence of PVP gradually deposited. (b) The product prepared in the presence of PVP was stable for at least 1 month.

Fig. S2 TEM images of the products synthesized at different pH values: (a) pH 3, (b) pH 5, (c) pH

2, and (d) pH 1.

Fe Fe Cu O FeCu Cu	Element At C(K) O(K) U(K) Fe(K) Cu(K) Cl	omic % 15.01 40.80 15.79 5.21 23.20 V Fe	Cu Fe Cu
	6	Ś	

Fig. S3 EDS analysis of ultrathin FeV_3O_8 nanoplatelets

Fig. S4 The N_2 adsorption and desorption isotherm of three samples: FeV₃O₈ nanobelt (black square), FeV₃O₈ nanoplatelet (red triangle) and FeV₃O₈ nanosheet (blue circle).

Fig. S5 Photodegradation efficiencies of ultrathin FeV_3O_8 nanoplatelets within 30-min visible-light irradiation under different reaction conditions: open atmosphere (red square) and nitrogen atmosphere (black circle).