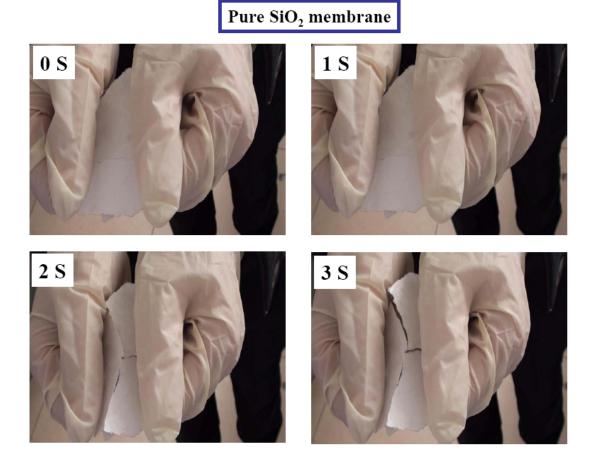
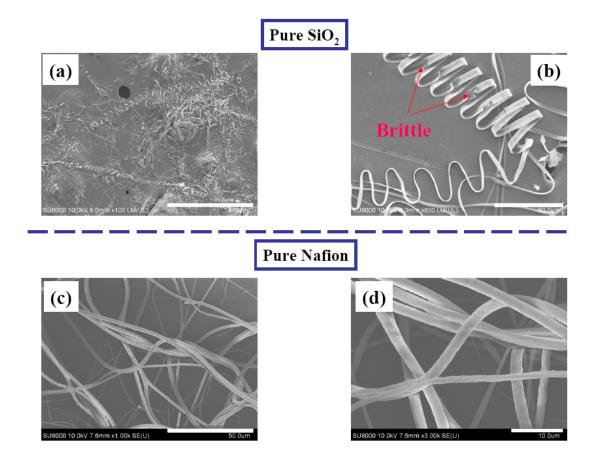
Electrospun Silica/Nafion Hybrid Products: Mechanic Improving, Wettability Tuning and Periodic Structure Adjusting

Jianjun Li,^a Jungang Cao,^b Zhonglin Wei,^b Min Yang,^c Weilong Yin,^a Kai Yui,^d
Yongtao Yao,^{*a} Haibao Lv,^{*a} Xiaodong He,^a Jinsong Leng,^a


^aNational Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China E-mail: yaoyt99@163.com and luhb@hit.edu.cn

^bCollege of Chemistry, Jilin University, Changchun, 130012, P. R. China


^cSchool of Chemical Engineering & Technology, Harbin Institute of Technology,

Harbin, 150080, P. R. China

^dThe George Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Figure S1. Indication of brittleness of electrospun pure silica membrane.

Figure S2. SEM images of silica ribbon with long-range periodic structure (a: scalar bar 500 μ m) and brittleness of single electrospun silica product (b: scalar bar 60 μ m); SEM images of Nafion with a much narrow diameter distribution (c and d: scalar bar 50 and 10 μ m).

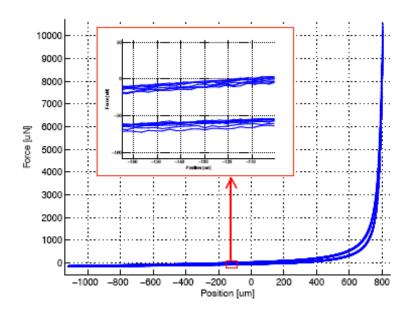


Figure S3. Force versus deformation curve of hybrid fiber under -150 \sim 11000 μN and the measurement has been repeated 8 times.