Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supplementary information

Nitrogen-doped reduced graphene oxide for high-performance flexible

all-solid-state micro-supercapacitors

Shuangyu Liu,^{ab} Jian Xie,^{*ac} Haibo Li,^d Ye Wang,^b Hui Ying Yang,^{*b} Tiejun Zhu,^a Shichao Zhang,^e

Gaoshao Cao^c and Xinbing Zhao^{ac}

^aState Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China. E-mail: xiejian1977@zju.edu.cn; Fax: +86-571-87951451; Tel: +86-571-87952181
^bPillar of Engineering Product Development, Singapore University of Technology and Design, 20 Dover Drive, Singapore 138682, Singapore. E-mail: yanghuiying@sutd.edu.sg; Tel: +65 63036663
^cKey Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, China
^dKey Laboratory of Ningxia for Photovoltaic Materials, Ningxia University, Yinchuan 750021, China
^eSchool of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191,

China

Fig. S1 Device for screen printing.

Fig. S2 Cross-sectional SEM image of the MSC using undoped rGO.

Fig. S3 Charge and discharge curves of MSC using undoped rGO at 20–500 μ A cm⁻².

Fig. S4 Self-discharge curve of MSCs.

Electrode processing method	Electrolyte	Specific capacitance [mF cm ⁻²]	Test condition	Reference
Screen printing	PVA/H ₃ PO ₄	3.40	20 µA cm ⁻²	This work
Laser scribing	GO	0.51	40 mV s^{-1}	[34]
Laser scribing	1 M H_3PO_4 aqueous solution	3.67	$1 \text{ A g}^{-1}_{\text{LSG/electrode}}$	[35]
Laser scribing	PVA/H ₂ SO ₄	2.32	16.8 mA cm ⁻³	[36]
Laser scribing	GO	0.86	200 mA g^{-1}	[37]
Spin coating	PVA/H ₂ SO ₄	0.08	10 mV s^{-1}	[39]
Electrophoretic deposition	PVA/H ₃ PO ₄	0.46	1 A g ⁻¹	[38]
Electrophoretic deposition	$0.5 \text{ M Na}_2 \text{SO}_4$ aqueous solution	0.53	15 μA cm ⁻²	[40]
Electrophoretic deposition	0.5 M Na ₂ SO ₄ aqueous solution	< 0.67	15 μA cm ⁻²	[41]
LBL assembly	PVA/H ₃ PO ₄	0.39	0.28 μA cm ⁻²	[30]

Table S1. Comparison of specific capacitance (mF cm⁻²) of MSCs with graphene materials