Tuning Energy Band-gap of Gallium Oxide Crystalline to Enhance Photoelectrochemical Water Splitting: Mixed-phase Junctions

Ming-Gang Ju ${ }^{1,2}$, Xiang Wang ${ }^{1,4}$, WanZhen Liang ${ }^{1,3, *}$, Yi Zhao ${ }^{1,3, *}$, and Can Li ${ }^{1,4, *}$ ${ }^{1}$ Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
${ }^{2}$ Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
${ }^{3}$ State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China ${ }^{4}$ State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China (Dated: August 5, 2014)

TABLE I: The calculated lattice constants of $\alpha-\mathrm{Ga}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Ga}_{2} \mathrm{O}_{3}$ with the energy cutoff of 520 eV .

	$\alpha-\mathrm{Ga}_{2} \mathrm{O}_{3}$	$\beta-\mathrm{Ga}_{2} \mathrm{O}_{3}$
	Calc.	Calc.
$a(\AA)$	5.05	12.44
(\AA)		3.08
$c(\AA)$	13.63	5.87
$\gamma($ degree $)$		103.8

Fig. 1: The total DOS of $\alpha-\mathrm{Ga}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Ga}_{2} \mathrm{O}_{3}$ by PBE.

Fig. 2: The total and projected DOS of per formula unit of $\alpha-\mathrm{Ga}_{2} \mathrm{O}_{3}$ and $\beta-\mathrm{Ga}_{2} \mathrm{O}_{3}$ calculated by HSE06 functional. The conduction band are zoom in. The Fermi level is set to zero.

Fig. 3: The differences of PAC for the heterostructures (b-type) with the crystal axis angle $\left(101^{\circ}\right)$.

Fig. 4: The total DOS of periodic slab model of the heterostructures (\boldsymbol{a}) with the different crystal axis angles 95° (left) and 101° (right).

Fig. 5: The LDOS of periodic slab model of the heterostructures(\boldsymbol{a}) with the different crystal axis angles 95°, (left) and 101° (right).

Fig. 6: The optical absorption curves of the mixed-phase and the two pure phases by PBE.

Fig. 7: The calculated energies of b-type heterostructures A1-B1 with different lengths and the most stable heterostructure with length $45.8 \AA$. $\left(\phi=101^{\circ}\right)$

Fig. 8: The total DOS of \boldsymbol{b}-type heterostructures A1-B1 with length $45.8 \AA .\left(\phi=101^{\circ}\right)$

Fig. 9: The LDOSs of b-type heterostructures A1-B1 with length $45.8 \AA .\left(\phi=101^{\circ}\right)$

* Electronic address: liangwz@xmu.edu.cn, yizhao@xmu.edu.cn, canli@dicp.ac.cn

