Supporting Information (3 pages)

Effect of Fractal Silver Electrodes on Charge Collection and Light Distribution in Semiconducting Organic Polymer Films

Rachel L. Chamousis^[a], Lilian Chang^[b], William J Watterson,^[c] Rick Montgomery, ^[c] Richard

Taylor^[c], Adam J. Moule^[b], Sean Shaheen, ^[d] Boaz Ilan, ^[e] Dr. Jao van de Lagemaat, ^[f] Frank E.

Osterloh*^[a]

^a Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616 (USA), Fax:

(+1)5307528995, Email: fosterloh@ucdavis.edu

^b Department of Chemical Engineering and Materials Science, University of California, Davis, One Shields Avenue,

Davis, CA 95616 (USA)

^c Department of Physics, University of Oregon, Eugene, 1585 E. 13th Ave., Eugene, OR 97403 (USA)

^d Dept. of Electrical, Computer, and Energy Engineering, Renewable and Sustainable Energy Institute, University of

Colorado at Boulder, UCB 425, Boulder, CO 80309

^e School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343

^f Chemical and Materials Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401

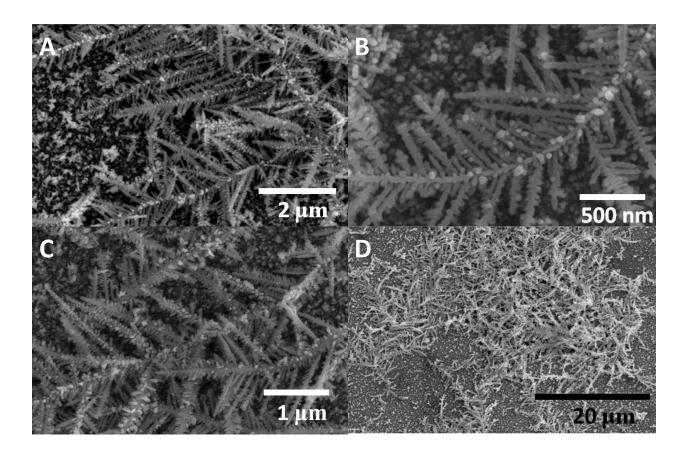
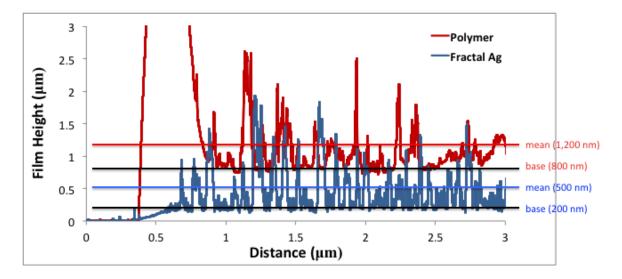



Figure S1. Scanning electron microscopy images of fractal silver on FTO obtained by electrodeposition at -0.85 V vs NHE for 300 s from an aqueous solution of $0.005 \text{ M Ag}_2\text{SO}_4$, $0.01 \text{ M H}_2\text{SO}_4$, and $0.5 \text{ M Na}_2\text{SO}_4$.

Figure S2. Representative profilometer traces for non-coated and polymer coated silver fractal films. Polymer thickness (600 nm) was calculated by subtracting the baseline of the fractal silver (200 nm) from the baseline of the polymer-coated film (800 nm). Mean fractal heights are also shown.