Supplementary Information

A simple and low-cost method for the preparation of selfsupported TiO₂:WO₃ ceramic heterojunction wafers

Neel M. Makwana^{*a*}, Raul Quesada-Cabrera^{*a*}, Ivan P. Parkin^{*a*}, Paul F. McMillan^{*a*}, Andrew Mills^{*b*} and Jawwad A. Darr^{**a*}

^a Christopher Ingold Laboratories, Department of Chemistry, University College London, 20 Gordon
Street, London, WC1H 0AJ, United Kingdom
^b School of Chemistry and Chemical Engineering, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5AG, United Kingdom

*Corresponding author email: j.a.darr@ucl.ac.uk

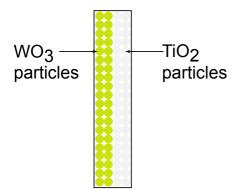
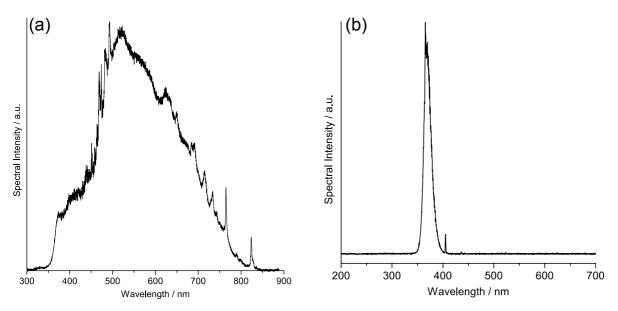
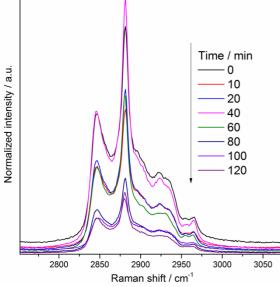



Illustration depicting the preparation of layered TiO_2 -WO₃ ceramic wafers Fig. S1



Photograph of the CNC-milled aluminum 'UCL' lettering cut-out template. Fig. S2

Spectral output of (a) 75 W Xe lamp and (b) $2 \times 8W$ 365 nm lamp. Fig. S3

We attempted to use Raman spectroscopy to evaluate the degradation of stearic acid. Stearic acid was dropped onto the TiO_2 or WO_3 surface of the TiO_2 : WO_3 SPH and Raman spectra (514.5 nm laser) were taken every 10 minutes of the surface containing stearic acid. Although significant degradation was observed (there was a rapid decrease in integrated peak areas from peaks contributed to by stearic acid over 2 hours of the experiment), we were concerned that the Raman laser may have potentially contributed to the degradation of stearic acid, especially on the WO_3 surface (Fig. S5 shows the Raman spectra obtained), and for this reason we did not continue to use this technique and instead monitored the degradation by CO_2 evolution, as described in the main text.

Raman spectra obtained during stearic acid degradation experiment. Fig. S4

References

1. S. Elouali, A. Mills, I. P. Parkin, E. Bailey, P. F. McMillan and J. A. Darr, *J. Photochem. Photobiol.*, *A*, 2010, **216**, 110-114.