Electronic Supplementary Information

CoP nanostructures with different morphologies: synthesis, characterization and study of their electrocatalytic performace toward hydrogen evolution reaction

Ping Jiang,^a Qian Liu,^a Chenjiao Ge,^a Wei Cui,^a Zonghua Pu,^a Abdullah M. Asiri^{b,c} and Xuping Sun^{a,b,c*}

^a State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China

^b Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

^c Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia

*To whom correspondence should be addressed. Tel/Fax: +86-431-85262065. E-mail: sunxp@ciac.ac.cn

Fig. S1 (a) TEM and (b) HRTEM images taken from one single Co_3O_4 nanowire. (c) EDX spectrum of Co_3O_4 NWs. (d) Nitrogen adsorption/desorption isotherm plot and Barrett-Joyner-Halenda (BJH) poresize distribution curve (inset) of nanoporous Co_3O_4 NWs.

Table S1 Comparison of HER performance in acidic electrolytes for CoP nanostructures developed in this study with other non-noble-metal HER electrocatalysts (*a* catalysts directly grown on current collectors).

Catalyst	Tafel slope	Current density	η at the	Exchange current	Ref.
	(mV/dec)	(j, mA/cm²)	corresponding <i>j</i>	density (mA/cm²)	
			(mV)		
double-gyroid MoS ₂ /FTO ^a	50	2	190	6.9×10 ⁻⁴	6c
metallic MoS ₂ nanosheets	54	10	195	-	6d
defect-rich MoS ₂	50	13	200	8.91×10 ⁻³	6e
MoS ₂ /graphene/Ni foam ^a	42.8	10	141	-	6f
		100	263		
MoO ₃ -MoS ₂ /FTO ^a	50-60	10	310	8.2×10 ⁻⁵	6ј
bulk Mo ₂ C	56	1	~150	1.3×10-3	61
bulk MoB	55	1	~150	1.4×10 ⁻³	61
NiMoN _x /C	35.9	2	170	0.24	6р
Co _{0.6} Mo _{1.4} N ₂	-	10	200	0.23	60
Ni ₂ P hollow nanoparticles	46	10	116	0.033	10a
		100	180		
Ni ₂ P nanoparticles	87	20	140	-	10b
FeP nanosheets	67	10	~240	-	10c
interconnected network of	54	10	125	0.086	10d
MoP nanoparticles					
bulk MoP	54	30	180	0.034	10e
Cu ₃ P NWs/CF ^a	54	10	122	0.13	10f
CoP hollow nanoparticles	50	20	85	0.14	11
CoP/CNT	54	2	70	0.13	12a
		10	122		

	51	10	(7	0.200	101
CoP/CC ^a	51	10	6 /	0.288	126
np-CoP NWs/Ti ^a	65	20	95	-	12c
-					
CoSe ₂ nanobelts	50	10	~120	8.4×10-3	20
-					
CoSe ₂ NP/CP ^a	42.1	10	137	$(4.9\pm1.4)\times10^{-3}$	21
-				· · · ·	
Co-NRCNTs	69	1	140	0.01	22
	_	10	260	_	
CoP NWs	54	2	65	0.15	This work
		-	00	0.10	
	_	10	110	-	
		10	110		
	-	20	1/12	_	
		20	142		
CoPNSs	61	10	164	0.054	This work
	01	10	104	0.034	THIS WOLK
CoD NDs	07	10	221	0.022	This work
COP INFS	0 /	10	221	0.032	THIS WOLK

Fig. S2 Calculated exchange current density for CoP NWs in $0.5 \text{ M H}_2\text{SO}_4$ by applying extrapolation method to the Tafel plot.

Fig. S3 (a) XRD pattern, (b) TEM image, (c) HRTEM image, (d) EDX spectrum, and (e) nitrogen adsorption/desorption isotherm plot of CoP NSs.

Fig. S4 (a) XRD pattern of CoP NPs. (b) TEM and HRTEM (inset) images of CoP NPs. (c) EDX spectrum and (d) nitrogen adsorption/desorption isotherm plot of CoP NPs.