Electronic Supporting Information (ESI) of the manuscript entitled

Efficient nitrogen-doping and structural control of hierarchical carbons using unconventional precursors in form of deep eutectic solvents

by N. Lopez-Salas et al.

Table S1 – Chemical shifts obtained by ¹H NMR spectroscopy – at 90 °C and using deuterated DMSO as reference solvent – of resorcinol (Re), 4-Hexylresorcinol (4Re), *p*-nitrophenol (pNP) and choline chloride (ChCl), and the eutectic mixtures prepared with different molar ratios of the components.

		δ (ppm)													
Sample	Re			4Re						pNP		ChCl			
	<u>H</u> at C5	<u>H</u> at C4&6	<u>H</u> at C2	<u>H</u> at C12	<u>Н</u> at С11-9	<u>H</u> at C8	<u>H</u> at C7	<u>H</u> at C6	<u>H</u> at C5	<u>H</u> at C2	<u>H</u> at C3& 5	<u>H</u> at C2& 5	<u>H</u> at C2	<u>H</u> at C1	<u>H</u> at NC H₃
Re	6.9 (1H)	6.2 (2H)	6.2 (1H)												
4Re				0.9 (3H)	1.3 (6H)	1.5 (2H)	2.5 (2H)	6.1 (1H)	8.5 (1H)	6.8 (1H)					
pNP											8.1 (2H)	6.9 (2H)			
ChCl													3.9 (2H)	3.5 (2H)	3.2 (9H)
N1 _{DES}	6.1 (1H)	6.2 (2H)	[*] 5.8 (1H)	0.0 (3H)	0.4 (6H)	0.7 (2H)	1.7 (2H)	[*] 5.8 (1H)	6.2 (1H)	[*] 5.8 (1H)	7.2 (2H)	6.0 (2H)	3.2 (2H)	2.5 (2H)	2.2 (9H)
RC31	6.1 (3H)	5.7 (6H)	5.8 (3H)	-	-	-	-	-	-	-	-	-	2.8 (2H)	2.0 (2H)	1.7 (9H)
AReC31				0.2 (3H)	0.6 (18H)	0.8 (6H)	1.8 (6H)	5.8 (3H)	6.1 (3H)	6.0 (3H)			3.1 (2H)	2.4 (2H)	2.0 (9H)
pNPC3 1	-	-	-	-	-	-	-	-	-	-	7.2 (6H)	6.3 (6H)	3.6 (2H)	3.1 (2H)	2.7 (9H)

* These peaks are all included in the signal at 5.8 ppm.

^{**} These peaks are all included in the signal at 6.2 ppm.

Table S2 – Chemical shifts obtained by ¹H NMR spectroscopy – at room temperature and using $CDCl_3$ as the external reference – of resorcinol (Re), 4-Hexylresorcinol (4Re), *p*-nitrophenol (pNP) and choline chloride (ChCl), and the D₂O diluted eutectic mixtures prepared with different compositions of them (N1_{DES}, N2_{DES} and N3_{DES}).

		δ (ppm)													
Sample	Re			4Re						pNP		ChCl			
	<u>H</u> at C5	<u>H</u> at C4&6	<u>H</u> at C2	<u>H</u> at C12	<u>H</u> at C11- 9	<u>H</u> at C8	<u>H</u> at C7	<u>H</u> at C6	<u>H</u> at C5	<u>H</u> at C2	<u>H</u> at C3&5	<u>H</u> at C2&5	<u>H</u> at C2	<u>H</u> at C1	<u>H</u> at NCH₃
Re	7.0 (1H)	7.4 (2H)	6.3 (1H)												
4Re				0.9 (3H)	1.3 (6H)	1.5 (2H)	2.5 (2H)	6.3 (1H)	6.9 (1H)	6.3 (1H)					
pNP											8.1 (2H)	6.9 (2H)			
ChCl													4.1 (2H)	3.6 (2H)	3.2 (9H)
Diluted	6.6 (1H)	6.3 (2H)	*6.2 (1H)	0.6 (3H)	1.0 (6H)	1.2 (2H)	2.2 (2H)	*6.2 (1H)	6.4 (1H)	*6.2 (1H)	6.8 (2H)	6.4 (2H)	3.8 (2H)	3.1 (2H)	2.8 (9H)
Diluted	6.8	6.4	*6.3	0.6	0.9	1.2	2.2	*6.3	6.6	*6.3	7.6	6.6	3.9	3.2	2.9
N2 _{DES}	(1H)	(2H)	(1H)	(3H)	(6H)	(2H)	(2H)	(1H)	(1H)	(1H)	(4H)	(4H)	(2H)	(2H)	(9H)
Diluted	6.8	6.4	*6.3	0.5	0.9	1.2	2.2	*6.3	6.6	*6.3	7.6	6.6	3.9	3.3	3.0
N3 _{DES}	(1H)	(2H)	(1H)	(3H)	(6H)	(2H)	(2H)	(1H)	(1H)	(1H)	(6H)	(6H)	(2H)	(2H)	(9H)

* These peaks are all included in the signal at ca. 6.2-6.3 ppm.

Table S3 – Chemical shifts obtained from the ¹H NMR spectrum – at room temperature and using deuterated DMSO as the external reference – of a D₂O dilution of pNP-ChCl (25 wt%) with a molar ratio of 0.15:1. It is worth noting that the chemical shifts of the pNP-ChCl mixture in D₂O are similar to those of pNP and ChCl in N1_{DES}, N2_{DES} and N3_{DES} when they were also diluted in D₂O (see Table S2).

	δ (ppm)								
Samplo	р	NP	ChCl						
Sample	<u>H</u> at C3&5	<u>H</u> at C2&5	<u>H</u> at C2	<u>H</u> at C1	<u>H</u> at NCH₃				
pNP	8.1 (2H)	6.9 (2H)							
ChCl			4.1 (2H)	3.6 (2H)	3.2 (9H)				
Diluted	7.5	6.3	3.5	3.0	2.6				
pNP:ChCl 0.15:1	(0.3 H)	(0.3 H)	(2H)	(2H)	(9H)				

Table S4 - XPS binding energy values of carbon, nitrogen and oxygen - obtained afterdeconvolution of the XPS spectra - for $N3_{c@500}$ and $N3_{c@800}$.

Sample	C1s	N1s	O1s	O/C at	N/C at	
N3 _{c@500}	284.8 (67) 286.2 (27) 288.2 (6)	398.6 (39) 400.0 (40) 401.6 (13) 405.0 (8)	532.4 (47) 533.8 (53)	0.118	0.039	
N3 _{c@800}	284.8 (70) 286.2 (15) 287.5 (10) 289.4 (5)	398.6 (31) 400.0 (52) 401.4 (17)	532.4 (58) 533.8 (42)	0.099	0.016	

Figure S1 – From top to bottom, ¹H NMR spectra – at 90 °C and using deuterated DMSO as the external reference – of N1_{DES}, and of the binary DESs formed between Re:ChCl, pNP:ChCl, and 4Re:ChCl with a 3:1 molar ratio.

Figure S2 – ¹H NMR spectra – at 90 °C and using deuterated DMSO as reference solvent – of (from top to bottom) of Re, 4Re, pNP, and ChCl.

Figure S3 – ¹H NMR spectra – at room temperature and using deuterated $CDCl_3$ as the external reference – of diluted DES (from top to bottom) $N1_{DES}$, $N2_{DES}$ and $N3_{DES}$.

Figure S4 – ¹H NMR spectra – at room temperature and using deuterated $CDCl_3$ as the external reference – of the freeze-dried extracts obtained after thorough full washing of $N1_{GEL}$, $N2_{GEL}$ and $N3_{GEL}$.

Figure S5 - ¹H NMR spectrum – at room temperature and using deuterated DMSO as the external reference – of a D_2O dilution of pNP-ChCl (25 wt%) with a molar ratio of 0.15:1.

Figure S6 – XRD pattern of the residue – e.g. pNP-ChCl with a molar ratio of 0.15:1 as revealed by NMR – obtained from the thorough full washing of the resin resulting from co-condensation. Crystals were formed upon the evaporation of the water – 90 $^{\circ}$ C overnight – used for washing.

Figure S7 – SEM micrographs of (from left to right) $N1_{C@400}$, $N1_{C@500}$ and $N1_{C@600}$.

Figure S8 – SEM micrographs of (from left to right) $N2_{C@400}$, $N2_{C@500}$ and $N2_{C@600}$.

Figure S9 – SEM micrographs of (from left to right) $N3_{C@400}$, $N3_{C@500}$ and $N3_{C@600}$.

