Surfactants assisted synthesis of nano-LiFePO₄/C composite as cathode materials for lithium-ion batteries

Qingyu Li,^a Fenghua Zheng,^{*a} Youguo Huang,^a Xiaohui Zhang,^a Qiang Wu^a, Dongju Fu^b, Jingji Zhang^a, Jinchao Yin^a and Hongqiang Wang,^{*a}

^a School of Chemistry and Pharmaceutical, Guangxi Normal University, Guangxi 541004, China;
 ^b Research Institute Of Tsinghua University in Shenzhen, Shenzhen 518057, China
 Corresponence author: Hong-Qiang Wang Tel: 86-18607831356. Fax: 86-0773-5858562. E-mail: whq74@126.com; Feng-Hua Zheng E-mail: zhengfh870627@163.com.

10 Experimental section

2.1. Synthesis

All chemicals used in this article are of 99% purity. LiFePO₄/C was synthesized via solid state reaction between LiH₂PO₄ and FeC₂O₄ taken in stoichiometric quantities. Six types of surfactants (1.3 wt% Tween80, 2.0 wt% Tween40, 2.1 wt% Tween20 and (the weight ratios of Tween80 to Tween20 equal to 2.5, 1.5, 0.5) composites surfactants: (1.5 wt%, 1.7 wt% and 1.9 wt%) were also added

- 15 into the reaction. The reaction process consisted of three steps as follow. (i) all reactants were mixed together with 50 wt% of deionized water and ball milling for 3 h at room temperature; (ii) the as-prepared precursor was dried using an oven at 80°C for 12 h followed by disintegrate through crusher to obtain a fine solid powder, (iii) The final product was obtained by calcineing the as-obtained precursor powder at the temperature ranging from 600 to 800 °C under high-purity N₂ atmosphere. In order to control the amount of residual carbon in the composites, a series of samples was synthesized by calcinating amorphous LiFePO₄ with proper amounts of polymer at
- 20 different temperatures. The final amount of residual carbon was controlled to be about 1.5 wt% for all samples. Finally, the as-prepared LiFePO₄/C using composites surfactants (Tween80 to Tween20 equal to 2.5, 1.5, 0.5) as carbon source were denoted as LFP-A, LFP-B and LFP-C respectively.

2.2 Characterization

The crystal structures of the as-prepared material were analyzed by X-ray diffraction (XRD: Rigaku, D/max 2500v/pc) using Cu Kα 25 radiation. The content of carbon was examined by a 2400 Series II CHNS/O elemental analyzer (PerkinElmer, Waltham, USA). The microstructure of the powder and particle size distribution were investigated by scanning electron microscopy (SEM: Philips, FEI Quanta 200 FEG) Fourier transform infrared (FTIR) spectra were obtained on an AVATAR370 spectrometer. The carbon coating thickness was observed by transmission electron microscopy (TEM: JEM-2010, JEOL)

2.3 Electrochemical evaluation

- 30 To prepare the cathode, active material (LFP), the viscous cathode slurry composed of active material (LFP), acetylene black and polyvinylidene fluoride (PVDF) binder were mixed according to the ratio of 94:3:3 by weight in NMP solvent was cast on aluminum foil and then dried at 90 °C under vacuum for 12 h. After that, the cells were assembled in an argon-atmosphere-filled glove box with lithium foil as the anode, LFP as cathode,celgards2200 separator and 1 M LiPF₆ solution in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) with a volumetric ratio of 1:1 as the electrolyte. Electrochemical tests were carried out using an automatic 35 galvanostatic charge-discharge unit, with a Battery Tester between 2.5 and 4.2 V at different temperature of 25, 0 and -20°C.
- Electrochemical impedance spectroscopy (EIS) of the cell was carried out using IM6. The amplitude of the AC signal was 5 mV over the frequency range between 100 kHz and 0.01 Hz.

Fig. S1 XRD patterns of the LiH₂PO₄ crystals recrystallized without and with different surfactants of Tween80, Tween40 and Tween20.

Fig. S2 Infrared spectra of pure surfactant: (a) Tween80 (c) Tween40 (e) Tween20 and the different surfactants dried with FeC₂O₄: (b) Tween80 (d) Tween40 (f) Tween20.

Fig. S3 The specific capacity of the LiFePO₄/C composites synthesized with different ratios of Tween80 to Tween20 (a) 2.5, (b) 1.5 and (c) 0.5 at 0.1 C.

10

5

Fig. S4 The CV profiles of the LiFePO₄/C synthesized with different ratios of Tween80 to Tween20 (a) 2.5, (b) 1.5 and (c) 0.5 at the scan rate of 0.1mVs^{-1} .

Properties Temperature	LiFePO ₄ /C prepared with Tween80 at			LiFePO ₄ /C prepared with Tween40 at			LiFePO ₄ /C prepared with Tween20 at		
	600°C	700°C	800°C	600°C	700°C	800°C	600°C	700°C	800°C
Average crystal size (nm)	23	27	31	26	30	35	29	33	38
Particle size range (nm)	40-70	75-115	145-225	48-80	85-120	155-250	65-100	95-140	175-265
Average particle size (nm)	59	95	185	64	108	205	83	118	220

Table 1 Properties of LiFePO₄/C prepared with different surfactants at different temperatures for 10 h

Table 2 Lattice parameters of the LiH₂PO₄ recrystallizing without and with different surfactants

Sample	a /Å	b /Å	c /Å	Crystals size
without surfactant	6.80911	7.59839	6.21861	36
with Tween80	6.77810	7.58759	6.20971	18
with Tween40	6.78021	7.58521	6.21179	23
with Tween20	6.79021	7.59121	6.21389	28

5 Table. 3 Parameters obtained from electrochemical impedance spectra and I_D/I_G ratios from Raman spectra for LiFePO₄/C samples synthesized with different surfactants.

Samples	R_{Ω}/Ω	$R_{ m ct}/\Omega$	$i_o/\mathrm{mA}\cdot\mathrm{cm}^{-2}$	$I_{\rm D}/I_{\rm G}$ ratio
With Tween80	4.8	235	0.109	0.835
With Tween40	4.5	122.7	0.210	0.805
With Tween20	5.5	335	0.077	0.789

Table 4 Parameters obtained from electrochemical impedance spectra and I_D/I_G ratios from Raman spectra for LiFePO₄/Csamples prepared using different weight ratios of Tween80 to Tween20.

Composite surfactants (Tween80 to Tween20)	R_{Ω}/Ω	$R_{\rm ct}/\Omega$	$i_o/\mathrm{mA}\cdot\mathrm{cm}^{-2}$	$I_{\rm D}/I_{\rm G}$ ratio
2.5	3.85	105.2	0.244	0.813
1.5	3.21	85.5	0.300	0.802
0.5	3.9	181.9	0.141	0.796

10