Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting Information

High Efficiency Solution-Processed Two-Dimensional Small Molecule Organic Solar Cells Obtained via Low-Temperature Thermal Annealing

Zhengkun Du,^{ab} Weichao Chen,^a Yanhua Chen,^{ac} Shanlin Qiao,^a Xichang Bao,^a Shuguang Wen,^a Mingliang Sun,^c Liangliang Han,^a and Renqiang Yang^{*a}

^{*a*} CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China E-mail: yangrq@qibebt.ac.cn

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China

Figure S1. UV-vis absorption spectra of DCA3T(T-BDT) film before and after thermal annealing at 60 °C.

Figure S2. DSC thermograms at 10 °C min⁻¹ in the temperature range from 50 to 330 °C for DCA3T(T-BDT).

Figure S3. *J-V* characteristics of BHJ based on DCA3T(T-BDT):PC₆₁BM after thermal annealing at 60 °C with different blend ratios.

Figure S4. The *J*-*V* curve of the ITO/PEDOT/DCA3T(T-BDT) (100 nm)/Au diodes with the device configuration inset. The symbols are experimental data for transport of holes, and the solid line is fitted according to the space-charge-limited-current model.

Figure S5. AFM height images $(4 \ \mu m \times 4 \ \mu m)$ of DCA3T(T-BDT):PC₆₁BM (3:1, w:w) blend films before and after thermal annealing at different temperatures.

Figure S6. ¹H NMR (a) and ¹³C NMR (b) spectra of DCA3T(T-BDT).

Figure S7. HPLC-UV spectra of DCA3T(T-BDT).