Supporting Information

Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors

Xiaojun He^{a,*}, Hebao Zhang^a, Hao Zhang^a, Xiaojing Li^a, Nan Xiao^b, and Jieshan

Qiu ^{b,*}

^a School of Chemistry and Chemical Engineering, Anhui Key Lab of Coal Clean

Conversion and Utilization, Anhui University of Technology, No. 59 Hudong Road,

Maanshan 243002, China

^b Carbon Research Lab, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024, China

^{*}Corresponding authors. Tel: +86-555-2312355. Fax: +86-555-2311822. E-mail:

agdxjhe@126.com (X.J. He); Tel: +86-411-84986024. Fax: +86-411-84986015. E-

mail: jqiu@dlut.edu.cn (J. S. Qiu).

Fig. S1. A graphene-like stone ball under the foot of a monster in front of the **Lama Temple** in Beijing of China, which was designed and built as an art decoration in 1694 in Qing dynasty. The stone ball seems to be made of a blown graphene sheet with only carbon six-member rings.

Fig. S2. (a) TEM image of HPGB_{NP-6}; (b) TEM image of HPGB_{NP-4}; (c) FESEM image of PC_{1Ar}; (d) TEM image of HPGB_{2Ar}; (e) TEM image of HPGB_{Ar}.

Fig. S2a and b show the TEM images of HPGBs (HPGB_{NP-6} and HPGB_{NP-4}) that were synthesized directly from coal tar pitch by a simple nano-MgO template strategy coupled with KOH activation at pressure of -0.05 to -0.10 MPa. Fig. S2c shows that only conventional porous carbon (PC_{1Ar}) was synthesized in the absence of nano-MgO template. Fig. S2d shows the TEM image of HPGB (HPGB_{2Ar}) with some wrinkles that was made from coal tar pitch by only using nano-MgO as template. Fig. S2e shows the TEM image of HPGB_{Ar}.

Fig. S3. XPS spectra of HPGBs, showing that no observable N-species (\approx 396 eV, N1s) are present in HPGB_{Ar}, HPGB_{N2}, HPGB_{NP-6} and HPGB_{NP-4}. This means that the working gas atmosphere is not involved in the chemical reactions related to HPGBs under the experimental conditions.