Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Fig.S1 XRD patterns of Pd-g-C₃N₄, Pd-rGO and Pd-g-C₃N₄-rGO-n (n=0.5, 1, 2, 3, 4).

Fig. S2 Typical TEM image of $g-C_3N_4$ -rGO-2 and the energy dispersive X-ray spectrum corresponding to the random areas in the TEM image.

Table S1. C, O and N content (at%) of the $g-C_3N_4$ -rGO-2 at different areas according to EDX analysis. Focusing on random areas of the sample, a signal of N element is clearly observable and the corresponding N contents of different areas are almost the same, further proving the uniform distribution of $g-C_3N_4$ on the surface of rGO.

	El	ement content (at	%)
	С	Ν	О
а	93.50	4.30	2.20
b	93.40	4.30	2.30
с	93.10	4.40	2.50
d	93.30	4.30	2.40
e	93.40	4.30	2.30
f	92.90	4.50	2.50
g	93.20	4.40	2.40
h	93.30	4.30	2.40

Fig. S3 (a) TEM images of Pd-AC, (b) Histograms of Pd particle size distribution of Pd-AC.

Fig. S4 (a) Nitrogen adsorption-desorption isotherms and (b) the corresponding pore-size distribution of Pd-g-C₃N_{4-r}GO-2, respectively, confirm the mesoporous features with high surface area.

Fig. S5 (a) XPS survey spectra, (b) N 1s core-level XPS spectra of $g-C_3N_4$ -rGO-n prepared by annealing GO and melamine under different mass ratio. With the atomic percentage of nitrogen increasing, the four components of nitrogen increases at the same time.

ferent Mass Ratio.				
Samples	C at%	N at%	O at%	N/C
g-C ₃ N ₄ -rGO-0.5	87.9	6.5	5.6	0.074
g-C ₃ N ₄ -rGO-1	83.1	8.1	10.5	0.097
g-C ₃ N ₄ -rGO-2	86.5	9.5	4.9	0.110
g-C ₃ N ₄ -rGO-3	86.2	10.3	3.5	0.119
g-C ₃ N ₄ -rGO-4	85.7	11	3.3	0.128

Table S2. Elemental Composition of $g-C_3N_4$ -rGO Prepared by Annealing GO and Melamine under Different Mass Ratio.

As listed in Table S1, with the amount of melamine increasing, the calculated N/C atomic ratio ranges from 0.074 to 0.128, owing to more formation of $g-C_3N_4$ layers on the surface of graphene.

Fig. S6 (a) N 1s core-level XPS spectra of $g-C_3N_4$, (b) XPS survey spectra of the Pd- $g-C_3N_4$ -rGO-2 and Pd-rGO samples. The survey spectra (Fig. S6b) distinctly confirms the incorporation of nitrogen atoms within the final Pd- $g-C_3N_4$ -rGO-2 composite. Conversely, the XPS spectrum of Pd-rGO presents only the existence of Pd, C and O elements.

Table S3. The percent of different Pd valence states from the fitting curves of Pd 3d XPS spectra.

	Pd species		
Samples	Pd ⁰ (at %)	Pd ²⁺ (at %)	
Pd-g-C ₃ N ₄ -rGO-2	80.1	19.9	
Pd-rGO	73.6	26.4	

Table S4. The g-C₃N₄ content in different ternary catalysts, based on the XPS analysis.

Samples	$g-C_3N_4$ wt%		
Pd-g-C ₃ N ₄ -rGO-0.5	6.5		
Pd-g-C ₃ N ₄ -rGO-1	7.5		
Pd-g-C ₃ N ₄ -rGO-2	9.2		
Pd-g-C ₃ N ₄ -rGO-3	12.1		
Pd-g-C ₃ N ₄ -rGO-4	13.6		

Fig. S7 UV-vis spectra of g-C₃N₄-rGO-2, rGO, GO and g-C₃N₄.

Fig. S7 shows the UV–vis spectra of g-C₃N₄, GO, rGO and g-C₃N₄-rGO-2. Generally, the bare g-C₃N₄ could exhibit distinct adsorption only in the UV region but limited in the VL region, and rGO could exhibit strong adsorption both in the UV and VL region. However, the g-C₃N₄-rGO-2 not only has a strong adsorption in the entire region, but also has a significant enhancement in UV region, which provides another evidence for the combination of g-C₃N₄ layers and graphene sheets.

Fig. S8 TG analysis of Pd-g-C₃N₄-rGO-2, Pd-g-C₃N₄ and Pd-rGO.

The TG analyses of the Pd-g-C₃N₄-rGO-2, Pd-g-C₃N₄ and Pd-rGO samples were carried out under an air atmosphere from 30 to 800 °C at a heating rate of 5 °C·min⁻¹, as shown in Fig. S8. For all the samples, two major weight losses can be observed in their TG curves. The first weight losses below 200 °C are due to the physically

adsorbed water of the composite, while the second weight losses in the range of 200-600 °C correspond to the degradation of the supporting materials. For all the samples, the residue weight was about 20 % which can be ascribed to the remaining Pd and the mass percentage of Pd is in agree with the ICP results.

Fig. S9 Geometric structures of (a, b) graphene and (c, d) g-C₃N₄. The big red, small grey and blue balls represent Pd, C and N atoms, respectively.

 $2\sqrt{3} \times 2\sqrt{3}$ unit cell of Pd within a fcc structure in the (111) orientation is used to accommodate a 4×4 unit cell of the graphene and g-C₃N₄ (C₃₂Pd₁₂ and C₁₂N₁₆Pd₁₂). This leads to 3.3 % tensile strain and 1.2 % compressive strain, respectively. For graphene, the optimized average distance of the Pd to the graphene is 2.48 Å, agrees well with the reported 2.49 Å^[1]. While for g-C₃N₄, the missing C atoms in g-C₃N₄ structure would weaken the layers contact between Pd and C atoms, which is compensated by the strong Pd-N bonding of only 2.08 Å. As a result, the average distance between g-C₃N₄ and Pd_{top} increases a little larger to 2.52 Å, and the distance between g-C₃N₄ and Pd_{hollow} is significantly increased to 2.96 Å.

The charge density difference is defined as $\Delta \rho = \rho_{Pd/substrate} - \rho_{substrate} - \rho_{Pd}$ (substrate = graphene, g-C₃N₄). Here, $\rho_{Pd/substrate}$, $\rho_{substrate}$, ρ_{Pd} represent the charge density of the Pd covering on the substrate, the substrate layer and the Pd freestanding layer, respectively. Moreover, the absorptive energy is defined as $E_{abs} = E_{Pd/substrate} - E_{substrate} - E_{Pd}$ (substrate = graphene, g-C₃N₄). Here, $E_{Pd/substrate}$, $E_{substrate}$, E_{Pd} represent the structure energy of the Pd covering on the substrate, the substrate layer and the Pd freestanding layer, respectively.

Fig. S10 Partial density of states (PDOS) plots of Pd layer on (a) graphene and (b) $g-C_3N_4$. The red curves and the blue curves are the d orbital of the Pd atoms located at top and hollow site, respectively. Black and pink curves are the p orbital of C and N atoms. The Fermi energy is set at zero.

In order to explore more details of the electronic structures, the PDOSs are displayed in Fig. S10. For graphene, the overlaps between C_p and Pd_d_top at around -0.1 eV, -1.0 eV, -2.2 eV and -3.2 eV indicate the strong valence bonds between the C atoms and Pd_{top} atoms, while the bonding is relatively weaker between the Pd_{hollow} and C atoms, due to the longer distance from 2.52 Å to 2.96 Å. For g-C₃N₄, the N doping and the missing C atoms have significantly reduced the C–Pd_{top} bonding, which is compensated by the strong N–Pd_{top} valence bonding.Typically, the peak of the p orbital of N atoms located at about -1.4 eV and the wide overlaps between N_p and Pd_d_top. Therefore, the hybridizations among Pd, C and N atoms significantly affect the electronic structures, driving the Pd atoms anchor onto the g-C₃N₄ substrate.

Fig. S11 (a) CO_{ad} stripping voltammograms for different catalysts in 0.5 M H₂SO₄ solution with a scan rate of 50 mV·s⁻¹, (b) CVs of different catalysts in 1 M NaOH solutions with a scan rate of 50 mV·s⁻¹.

Either in alkaline medium or acid medium, Pd-g- C_3N_4 shows a low ECSA values. This may due to the poor electrical conductivity of g- C_3N_4 support material, which makes it difficult for electronic transmission, consequently results in low catalytic sites and in turn, electrooxidative activity for methanol and formic acid Fig. S11).

Fig. S12 CVs of different catalysts in (a) 0.5 M H_2SO_4 with 0.5 M HCOOH solution, (b) 1 M NaOH with 1 M CH₃OH with a scan rate of 50 mV·s⁻¹ at 25 °C.

Fig. S13 Chronoamperometric curves of different catalysts in (a) 0.5 M H_2SO_4 with 0.5 M HCOOH solution at 0.4 V, (b) 1 M NaOH with 1 M CH₃OH with a scan rate of 50 mV·s⁻¹ at 0.7 V at 25 °C.

Fig. S14 TEM images of (a) Pd-g-C₃N₄-rGO-2 (b) Pd-rGO after immersing in 0.5 M $H_2SO_4 + 0.5$ M HCOOH solution for two weeks at 25 °C.

Fig. S15 CV curves on (a) Pd-g-C₃N₄-rGO-2, (b)Pd-rGO, (c) Pd-AC catalysts in 0.5 M H_2SO_4 with 0.5 M HCOOH before and after immersing durability testing at a scan rate of 50 mV s⁻¹.

To be more convincing, the Pd-g-C₃N₄-rGO-2, Pd-rGO and Pd-AC catalyst were allowed to immerse in 0.5 M H₂SO₄ + 0.5 M HCOOH solution for two weeks at 25 °C. After immersing, the size and the dispersion of the Pd nanoparticles in Pd-g-C₃N₄rGO-2 sample was no significant change except for some slight degree of aggregation (Fig.S14a). However, in the case of Pd-rGO sample (Fig. S14b), the Pd nanoparticles grew increasingly larger and formed serious aggregates. Additionly, the electrochemically performances were also carried out to investigating the property changes of the electrocatalysts. As seen in Fig. S15, the peak current density on the Pd-g-C₃N₄-rGO-2 is 1302 mA mg⁻¹, which maintains 80.9 % of the initial current density. In contrast, the Pd-rGO and Pd-AC shows poor catalyze activity maintaining only 61.8 % and 39.8 % of the initial current density. In this regard, we speculate that the g-C₃N₄ layers on the surface of graphene could strongly anchor Pd nanoparticles and prevent them from conglomerating or dissolving under acid medium.

In the case of an irreversible reaction, the peak current in amperes is [2, 3]:

$$j_p = 2.99 \times 10^5 \, n(\alpha n')^{1/2} C_0 D_0^{1/2} v^{1/2} \tag{1}$$

where *n* is the electron number for the total reaction, *n'* is the electron number transferred in the rate-determining step and α is the charge transfer coefficient. The peak current density j_p measured in A·cm⁻² and the diffusion coefficient D_0 is in cm²·s⁻¹. The formic acid concentration is in the solution, C_0 , is in mol·cm⁻³ and the sweep rate, *v*, is in V·s⁻¹.

According to Brett and Brett^[4], the relationship between the peak potential (E_p) and scan rate (v) is defined by the following:

$$\left| dE_{p}/dlogv \right| = 0.0592/\alpha n, \tag{2}$$

where E_p is the peak potential and v is the scan rate. The value of $\alpha n'$ can be easily

estimated from the slope of E_p vs. log v^{1/2}.

Fig. S17 presents the Nyquist plots of EIS for Pd-g-C₃N₄-rGO-2, Pd-rGO and Pd-AC obtained in 1 M NaOH and 1 M CH₃OH solution at 0.73 V.

Electrochemical impedance spectra (EIS) were performed with amplitude of 5 mV in the frequency range from 10 kHz to 0.01 Hz at a potential of 0.73 V. As seen in Fig. S 17, the EIS plots of all catalysts have the similar semi-cycles, indicating that the mechanism of electrooxidation of methanol on the three catalysts is similar. The diameter of the semicycle can be used to estimate the charge transfer resistance (R_{ct}) of the catalyst^[5]. Typically, the R_{ct} values in rGO based composites are lower than that in Pd-AC, implying rGO is a more appropriate electrocatalyst support for direct liquid fuel cells. In addition, the appropriate amount of g-C₃N₄ on the surface of graphene significantly maintains the conductivity of overall electrodes, which is consistent well with the above analyses.

References

- 1. Q. J. Wang and J. G. Che, *Phys. Rev. Lett.*, 2009, **103**, 066802.
- H. Hosseini, M. Mahyari, A. Bagheri and A. Shaabani, J. Power Sources, 2014, 247, 70-77.
- Y. Wang, B. Wu, Y. Gao, Y. Tang, T. Lu, W. Xing and C. Liu, J. Power Sources, 2009, 192, 372-375.
- 4. C. M. Brett and A. M. O. Brett, *Electrochemistry: principles, methods, and applications*, Oxford university press Oxford, 1993.
- 5. H. Huang and X. Wang, J. Mater. Chem., 2012, 22, 22533-22541.