Supporting information

High temperature structural stability, electrical properties and chemical reactivity of NdBaCo_{2-x}Mn_xO_{5+ δ} ($0 \le x < 2$) perovskites for use as cathode in Solid Oxide Fuel Cells.

Thibault Broux¹, Mona Bahout^{1*}, James M. Hanlon¹, Olivier Hernandez¹, Serge Paofai¹, Andrey Berenov² and Stephen J. Skinner^{2*}

¹Institut des Sciences Chimiques de Rennes, Equipe « Chimie du Solide et Matériaux », UMR CNRS 6226, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes, France ² Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom

Results and discussion

Figure S1. Measured, calculated and difference XRD patterns for NdBaCo₂O_{5+δ}.

Table S1. Refined structural parameters for NdBaCo₂O_{5+δ} from XRD data.

Atoms	Site	x	у	ζ	Occupancy
Nd	1 <i>c</i>	0	0	0.5	1.00#
Ba	1 <i>a</i>	0	0	0	1.00#
Со	2 <i>t</i>	0.5	0.5	0.250(2)	1.00#
01	1 <i>f</i>	0.5	0.5	0	1.00#
02	2 <i>t</i>	0.5	0.5	0.278(1)	1.00#
03	2s	0.5	0	0.278(1)	1.00#
O4	1 <i>h</i>	0.5	0.5	0.5	0.76(1)

Space group *Pmmm:* # fixed, a = 3.94560(3) Å, b = 3.95208(3) Å, c = 7.57080(5) Å, $B_{overall} = 0.5(3)$ Å², $R_{wp} = 4.8\%$, $R_p = 4.8\%$, $R_{Bragg} = 7.0\%$, $\chi^2 = 1.36$. The *z*-positions for O2 and O3 were constrained to be equal.

Figure S2. Measured, calculated and difference XRD patterns for NdBaCo_{1.5}Mn_{0.5}O_{5+δ}.

Table 2. Refined structural parameters for NdBaCo_{1.5}Mn_{0.5}O_{5+ δ} from XRD data.

Atoms	Site	x	У	ζ,	Occupancy
Nd	1 <i>a</i>	0	0	0.5	1.00#
Ba	1 <i>b</i>	0	0	0	1.00#
Co/Mn	2 <i>h</i>	0.5	0.5	0.256(3)	0.75/0.25#
01	4 <i>i</i>	0.5	0	0.299(1)	1.00#
02	1 <i>c</i>	0.5	0.5	0	1.00#
03	1d	0.5	0.5	0.5	0.60(2)

Space group *P4/mmm*: # fixed, a = 3.94016(4) Å, c = 7.62584(6) Å, $B_{overall} = 0.4(2)$ Å², $R_{wp} = 5.55\%$, $R_p = 4.35\%$, $R_{Bragg} = 10.2\%$, $\chi^2 = 1.52$.

Figure S3. Measured, calculated and difference XRD patterns for NdBaCoMnO $_{5+\delta}.$

Table 3. Refined structural parameters for NdBaCoMnO_{5+\delta} from XRD data.

Atoms	Site	x	у	ζ.	Occupancy
Nd	1 <i>b</i>	0	0	0.5	1.00#
Ba	1 <i>a</i>	0	0	0	1.00#
Co/Mn	2 <i>h</i>	0.5	0.5	0.254(1)	0.5/0.5#
01	4 <i>i</i>	0.5	0	0.295(1)	1.00#
02	1 <i>c</i>	0.5	0.5	0	1.00#
03	1d	0.5	0.5	0.5	0.62(2)

Space group *P4/mmm*: # fixed, a = 3.92757(3) Å, c = 7.67617(6) Å, $B_{overall} = 0.4(2)$ Å², $R_{wp} = 7.01\%$, $R_p = 5.41\%$, $R_{Bragg} = 14.4\%$, $\chi^2 = 1.74$.

Figure S4. Measured, calculated and difference XRD patterns for NdBaCoMn $_{1.5}O_{5+\delta}$.

Table 4. Refined structural parameters for $NdBaCo_{0.5}Mn_{1.5}O_{5+\delta}$ from XRD data.

Atoms	Site	x	у	z	Occupancy
Nd/Ba	1 <i>a</i>	0	0	0	0.5/0.5#
Co/Mn	1 <i>b</i>	0.5	0.5	0.5	0.25/0.75#
0	3 <i>c</i>	0.5	0.5	0	0.90(2)

Space group *Pm-3m*: # fixed, a = 3.89518(5) Å, $B_{overall} = 0.2(1)$ Å², $R_{wp} = 9.43\%$, $R_p = 7.33\%$, $R_{Bragg} = 7.38\%$, $\chi^2 = 2.24$.

Figure S5. Measured, calculated and difference XRD patterns for $NdBaMn_2O_{5+\delta}$. The lower tick marks correspond to a hexagonal $BaMnO_3$ impurity.

Table 5. Refined structural parameters for NdBaMn_2O_{5+\delta} (99.9(3) wt %) from XRD data.

Atoms	Site	x/a	<i>y/b</i>	z/c	Occupancy
Nd/Ba	1 <i>a</i>	0	0	0	0.5/0.5#
Co/Mn	1 <i>b</i>	0.5	0.5	0.5	0.25/0.75#
0	3 <i>c</i>	0.5	0.5	0	0.90(2)

Space group *Pm-3m*: # fixed, a = 3.89675(3) Å, $B_{overall} = 0.3(1)$ Å², $R_{wp} = 11.3\%$, $R_p = 8.80\%$, R_{Bragg} (NdBaMn₂O₆) = 7.97%, $\chi^2 = 2.62$.