Supplementary Information

Metal hydroxides as conversion electrode for lithium-ion battery: A case study with Cu(OH)₂ nanoflower array

Atin Pramanik, Sandipan Maiti and Sourindra Mahanty* Fuel Cell & Battery Division CSIR-Central Glass & Ceramic Research Institute Kolkata 700032 India and CSIR-Network Institutes for Solar Energy (NISE), India E-mail: mahanty@cgcri.res.in; s_mahanty@hotmail.com Tel: +91-33-2322 3495 Fax: +91-33-2473 0957

Reaction scheme for the synthesis of Cu(OH)₂

For synthesis, aqueous solutions of $[Cu(NO_3)_2.9H_2O]$, 25% ammonia and NaOH are used. The reaction proceeds through formation of an octahedral metal complex intermediate, $[Cu(NH_3)_6]^{2+}$ as shown below:

Figure S1: FTIR spectra of (a) as-synthesized $Cu(OH)_2$ and (b) $Cu(OH)_2/MWCNT-50:50$. In the assynthesised $Cu(OH)_2$, presence of peaks at 3564 and 3311 cm⁻¹ reflect stretching modes of hydroxyl groups in the $Cu(OH)_2$.¹ The peak at 1626 cm⁻¹ reflects the bending mode of the absorbed water in the as synthesised $Cu(OH)_2$ powder.² C-O stretching vibration at 933 cm⁻¹ can be assigned to the corresponding metal cation (Cu^{2+}) in $Cu(OH)_2$.^{3,4} A new absorption band at 1032 cm⁻¹ in the composite material is due to MWCNT. A broad peak at 3433 cm⁻¹ appears instead of two separate peaks which were present in the bulk material and can be related to partial obliteration of hydrogen bonds.

Figure S2: TGA curve for the as-synthesized $Cu(OH)_2$ nanoflowers at a heating rate of 10° min⁻¹ under argon flow. The observed weight losses can be divided into three steps: (i) ~1.2% weight loss occurs in the temperature range 30°-192°C due to the loss of physically absorbed water (ii) ~14.9% weight loss in the 192-892°C range represents transformation from $Cu(OH)_2$ to CuO and finally, (iii) ~7.0% weight loss in the 892-942°C range represents the formation of metallic Cu from CuO.

Figure S3: Initial discharge/charge voltage profiles for different composites of Cu(OH)₂ and MWCNT at a current density of 0.05 mAcm⁻². All composites except Cu(OH)₂/MWCNT-50:50 show a low Columbic efficiency of 50-57%. Surprisingly, Cu(OH)₂/MWCNT-50:50 composite shows a very high Columbic efficiency of 84% which may be attributed to synergic interaction with MWCNT and lower degree of structural disorder/defects.

Figure S4: TEM images of $Cu(OH)_2/MWCNT-50:50$ composite. Clusters of short nanorod bundles of $Cu(OH)_2$ are formed from partial destruction of the flower like grains by hand grinding. An intimate attachment of MWCNT over $Cu(OH)_2$ is observed which would provide an enhanced intra-grain and inter-grain electron transport. At the same time, MWCNT would also act as a buffer matrix to absorb the volume changes associated with the conversion reactions.

Figure S5: Raman spectra of Cu(OH)₂/MWCNT composites. The G band (1570 cm⁻¹) is related to the presence of sp²-hybridized carbon and corresponds to the E_{2g} phonons. The D band (1340 cm⁻¹) is originated from disordered graphitic carbon due to the breathing modes of six-atom rings and requires a defect for its activation. The G' band (2670 cm⁻¹) is actually the second order D peak. From the intensity ratio I_D/I_G and $I_{G'}/I_G$, the relative degree of crystallographic disorder/defects can be estimated^{5,6}. Cu(OH)₂/MWCNT-50:50 shows the lowest I_D/I_G and $I_{G'}/I_G$ among all the composites indicating lowest concentration of structural disorder/defects.

Sample Name	I_D/I_G	I _G '/ I _G
Cu(OH) ₂ /MWCNT-50:50	0.64	0.21
Cu(OH) ₂ /MWCNT-60:40	0.99	0.30
Cu(OH) ₂ /MWCNT-70:30	0.94	0.28
Cu(OH) ₂ /MWCNT-80:20	0.82	0.26
MWCNT	0.93	0.25

Table S1: Raman spectroscopy data for Cu(OH)₂/MWCNT composites

Figure S6: Capacity retention for different composites of $Cu(OH)_2/MWCNT$. Capacity retention increases with the increasing amount of MWCNT in the composite. The capacity retention is maximum (~ 95%) when $Cu(OH)_2/MWCNT$ ratio is 50:50. Other composites of $Cu(OH)_2/MWCNT$ (80:20, 70:30 and 60:40) show about 60-65% of capacity retention whereas, the pristine $Cu(OH)_2$ retains only 16 % capacity after 50 cycles.

Table S2: Impedance spectroscopy data of Cu(OH)₂/MWCNT-50:50 composite anode after different cycling intervals

Cu(OH) ₂ /MWCNT-50:50	Rs	Rct	Q		W (mMho)	C (mF)
(At different cycling intervals)	(Ohm)	(Ohm)	Y ₀ (µMho)	N		
As assembled state	1.3	70.5	12.4	0.851	20.0	22.5
After 1 st cycle	1.4	101	32.0	0.753	11.1	19.1
After 20 th cycle	1.9	50.1	86.2	0.65	12.0	17
After 40 th cycle	3.1	34.9	98.2	0.59	13.3	16.5
After 60 th cycle	3.5	37.3	103.2	0.44	9.96	15.8
After 80 th cycle	4.0	42.8	144.4	0.37	11.3	12.8
After 100 th cycle	4.9	41.9	142.7	0.39	10.2	14.7

References:

1 L. Zhang, W. Lu, Y. Feng, J. Ni, Y. Lü, X. Shang, Acta Phys. -Chim. Sin., 2008, 24, 2257.

2 K. Nakamoto, Infrared spectra of inorganic and coordination compound. 4th ed. Trans. D. R. Huang,

- R. Q. Wang, Beijing: Chemical Industry Press, 1991:251.
- 3 A. Bernson, J. Lindgren, W. Huang, R. Frech, Polymer, 1995, 36, 4471.

- 4 J. M. Aguirre, A. Gutierrezb and O. Giraldo, J. Braz. Chem. Soc., 2011, 22, 546.
- 5 A. C. Ferrari and J. Robertson, Phys. Rev. B, 2001, 64, 075414.
- 6 L. G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O.

Moutinho, A. Lombardo, T. S. Kulmala and A. C. Ferrari, Nano Lett. 2011, 11, 3190.