Supporting information

Pyrene-conjugated Porphyrins for Efficient Mesoscopic Solar Cells: the role of spacer

Jianfeng Lu^{‡ [a]}, Shuangshuang Liu^{‡[a]}, Hao Li ^[a], Yan Shen ^[a], Jie Xu ^{[b]*}, Yibing Cheng ^[a,c], and Mingkui Wang ^[a] *

- [a] Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (P. R. China), Fax: (+) 86-27-87792225, E-mail: <u>mingkui.wang@mail.hust.edu.cn</u>
- [b] College of Materials Science & Engineering, Wuhan Textile University, FangZhi Road, 430073, Wuhan, P. R. China, E-mail: <u>mailto:xujie0@mail.ustc.edu.cn</u>

[c] Department of Materials Engineering, Monash University, Melbourne, Victoria, 3800, Australia

Table of contents:

1. Experimental section	P2
1.1 Chemicals:	P2
1.2 Synthesis of LW17-LW19	P2-8
1.2.1 Synthesis route of LW17-LW19	P2-3
1.2.2 NMR and HRMS characterization of compounds	P4-8
2. Device fabrication	P8
3. Photovoltaic characterization	Р9
4. Transient photovoltage decay (TPD) measurements	P10
5. Spectroscopy Electrochemical characterization of LW17-LW19	P9-11
6. The schematic energy-level diagram	P11

1.1 Chemicals:

All solvents and reagents, unless otherwise stated, were of analytical grade quality and used as received. Standard Schlenk techniques were employed to manipulate oxygen- and moisture-sensitive chemicals. 1-ethynylpyrene was purchased from Aldrich and used as received. 15-dibromo -10,20-bis[2,6-di(dodecyloxy)phenyl]porphyrin zinc(II) (coded as **ZnPBr**₂) was synthesized according to the literature.¹ 4-ethynylbenzoic acid, 5-ethynylthiophene-2-carboxylic acid, 4-(5-ethynylthiophen-2-yl)benzoic acid were synthesized according to the literature.²⁻⁴ Tetrahydrofuran (THF) was dried with sodium sand, and benzophenone indicator, dichloromethane (DCM), ether, triethylamine (TEA) were dried out with calcium hydride before using. Reactions were carried out under a dry nitrogen atmosphere. ¹H NMR and ¹³CNMR spectra were measured on a Bruker-AF301 AT 400MHz spectrometer. High resolution mass spectra (HRMS) were measured with a Bruker micro TOF mass spectrometer.

1.2 Synthesis of LW17-LW19

Synthesis of 5-bromo-15-(1-pyrene)ethynyl-10,20-bis[2,6-di(dodecyloxy) phenyl]porphinato zinc(II) (Por-1). Compound Por-1 was prepared under modified conditions of literature procedure.¹ Pd(PPh₃)₄ (11.6 mg, 0.01 mmol) and CuI (1.9 mg, 0.01 mmol) was added into a solution of ZnPBr₂ (149 mg, 0.1 mmol) and 1-ethynylpyrene (20 mg, 0.09 mmol) in fresh distilled THF (70.0 mL) and anhydrous TEA (6 mL) under N₂. The reaction was stirred at 45 °C for 18 h. The progress of the reaction was monitored with TLC. The solvent was removed under vacuum. The residue was purified on silica chromatograph using THF/hexane = 1/20 as eluent. The product was re-crystallized from CH₂Cl₂/MeOH to give green solid of Por-1 (62 mg, 35%). ¹H NMR (CDCl₃/pyridine-d5) δ 9.96 (d, J = 4.87 Hz, 1H), 9.65 (d, J = 4.87 Hz, 2H), 9.33 (d, J = 9.13 Hz, 1H), 9.02 (d, J = 5.2 Hz, 2H), 8.91 (d, J = 4.87 Hz, 2H), 8.73 (d, J = 1.3 Hz, 2H), 8.05 (t, J = 20.6 Hz, 2H), 7.75 (t, J = 8.85 Hz, 2H), 7.04 (t, J = 9.0 Hz, 4H), 3.84 (t, J = 13.2 Hz, 8H), 1.21-1.04(m, 26H), 0.98-0.88(m, 22H), 0.81(t, J=7.3Hz, 12H), 0.78-0.71(br, 8H), 0.61-0.53 (br, 16H), 0.47-0.40(br, 8H). MS (APCI) m/z: calcd for 1566.33; found 1566.1.

Synthesis of compound LW17 porphyrins. LW17 was prepared under modified conditions of literature procedure.¹ Pd(PPh₃)₄ (11.6 mg, 0.01 mmol) and CuI (1.9 mg, 0.01 mmol) was added into a solution of **Por-1** (157 mg, 0.1 mmol) and 4-ethynylbenzoic acid (45 mg, 0.3 mmol) in fresh distilled THF (70.0 mL) and anhydrous TEA (6 mL) under N₂. The reaction was stirred at 50 °C for 12 h. The progress of the reaction was monitored with TLC. The solvent was removed under vacuum. The residue was purified on silica chromatograph using DCM/MeOH= 20/1 as eluent. The product was recrystallized from CH₂Cl₂/MeOH to give green solid of LW17 (127 mg, 78%). ¹H NMR (CDCl₃/pyridine-d5) δ 9.84 (d, J = 3.89 Hz, 2H), 9.61 (d, J = 4.87 Hz, 2H), 9.31 (d, J = 9.13 Hz, 1H),

9.02 (d, J = 5.2 Hz, 2H), 8.91 (d, J = 4.38 Hz, 2H), 8.86 (d, J = 1.3 Hz, 2H), 8.67 (d, J = 8.7 Hz, 2H), 8.35 (t, J = 8.6 Hz, 1H), 8.30 (m, 4H), 8.25 (t, J = 7.3 Hz, 1H), 7.70 (t, J = 9.2 Hz, 2H), 7.04 (d, J = 8.7 Hz, 4H), 3.88 (t, J = 13.2 Hz, 8H), 1.21-1.04(m, 26H), 0.98-0.88(m, 22H), 0.81(t, J=7.3Hz, 12H), 0.78-0.71(br, 8H), 0.61-0.53 (br, 16H), 0.47-0.40(br, 8H). ¹³HNMR (CDCl₃/pyridine-d5) 160.0, 151.6, 151.5, 150.6, 149.7, 135.8, 132.0, 131.7, 131.4, 131.3, 130.9, 130.4, 130.2, 130.0. 129.7, 129.6, 128.4, 127.9, 127.4, 126.2, 125.5, 125.4, 124.9, 124.6, 123.4, 121.3, 119.7, 115.3, 105.1, 100.2, 98.8, 97.0, 94.8, 68.6, 31.8, 29.5, 29.4, 29.3, 29.2, 29.1, 28.7, 25.3, 22.6, 14.1. MS (APCI) m/z: calcd for 1628.9125; found 1628.9161. Elemental analysis calcd (%) for $C_{107}H_{128}N_4O_6Zn$: C 78.77, H 7.91, N 3.43; found C 78.57, H 7.96, N 3.45.

Synthesis of LW18 porphyrins. The product was re-crystallized from CH₂Cl₂/MeOH to give green solid of **LW18** (83%). ¹H NMR (CDCl₃/pyridine-d5) δ 9.84 (d, J = 3.89 Hz, 2H), 9.51 (d, J = 4.87 Hz, 2H), 9.30 (d, J = 8.13 Hz, 1H), 8.91 (d, J = 5.2 Hz, 2H), 8.84 (d, J = 4.38 Hz, 2H), 8.67 (d, J = 7.5 Hz, 1H), 8.35 (t, J = 8.6 Hz, 1H), 8.30 (t, J = 7.3 Hz, 2H), 8.24 (d, J = 7.5 Hz, 1H), 8.14 (s, 2H), 8.07 (d, J = 14.0 Hz, 1H), 7.71 (t, J = 9.2 Hz, 2H), 7.65 (s, 1H), 7.57 (s, 1H), 7.04 (d, J = 8.7 Hz, 4H), 3.89 (t, J = 13.2 Hz, 8H), 1.21-1.04(m, 26H), 0.98-0.88(m, 22H), 0.81(t, J=7.3Hz, 12H), 0.78-0.71(br, 8H), 0.61-0.53 (br, 16H), 0.47-0.40(br, 8H). ¹³HNMR (CDCl₃/pyridine-d5) 160.0, 151.5, 151.4, 150.6, 150.7, 149.7, 135.7, 132.1, 131.9, 131.7, 131.5, 131.3, 131.0, 130.4, 130.1, 129.7, 129.6, 128.4, 127.9, 127.4, 126.2, 125.5, 125.4, 125.0, 124.8, 124.6, 123.5, 121.3, 119.6, 115.4, 105.1, 100.2, 68.6, 31.8, 29.5, 29.4, 29.3, 29.2, 29.1, 28.7, 25.3, 22.6, 14.1. MS (APCI) m/z: calcd for 1634.8690; found 1634.8670. elemental analysis calcd (%) for C₁₀₅H₁₂₆N₄O₆SZn: C 77.01, H 7.76, N 3.42; found C 76.97, H 7.77, N 3.42.

Synthesis of LW19 porphyrins. The product was re-crystallized from CH₂Cl₂/MeOH to give brown-green solid of **LW19** (85%).8 9.83 (d, J = 3.89 Hz, 2H), 9.54 (d, J = 4.87 Hz, 2H), 9.31 (d, J = 9.13 Hz, 1H), 8.91 (d, J = 4.38 Hz, 2H), 8.83 (d, J = 1.3 Hz, 2H), 8.66 (d, J = 8.7 Hz, 2H), 8.35 (d, J = 7.7 Hz, 1H), 8.30 (t, J = 15.0 Hz, 2H), 8.24 (d, J = 7.3 Hz, 1H), 8.20 (d, J = 7.3 Hz, 2H), 8.05 (t, J = 7.3 Hz, 2H), 7.80 (t, J = 9.2 Hz, 2H), 7.72 (t, J = 9.2 Hz, 2H), 7.6 (s, 1H), 7.5 (s, 1H), 7.04 (d, J = 8.7 Hz, 4H), 3.89 (t, J = 13.2 Hz, 8H), 1.21-1.04(m, 26H), 0.98-0.88(m, 22H), 0.81(t, J=7.3Hz, 12H), 0.78-0.71(br, 8H), 0.61-0.53 (br, 16H), 0.47-0.40(br, 8H). ¹³HNMR (CDCl₃/pyridine-d5) 160.0, 149.8, 135.7, 132.1, 131.7, 131.6, 131.5, 131.3, 131.0, 130.4, 130.1, 129.7, 129.6, 128.4, 127.9, 127.4, 126.2, 125.5, 125.4, 125.0, 124.8, 124.6, 123.5, 121.3, 119.6, 115.4, 105.1, 100.2, 68.6, 31.8, 29.5, 29.4, 29.3, 29.2, 29.1, 28.7, 25.3, 22.6, 14.1. MS (APCI) m/z: calcd for 1710.9003; found 1710.8832. elemental analysis calcd (%) for C₁₁₁H₁₃₀N₄O₆SZn: C 77.80, H 7.65, N 3.27; found C 77.67, H 7.66, N, 3.26.

Fig. S1. ¹H NMR spectrum of LW17 porphyrin (400 MHz, CDCl₃/pyridine-d5, 298 K).

Fig. S2. ¹³C NMR spectrum of LW17 porphyrin (400 MHz, CDCl₃/pyridine-d5, 298 K).

Fig. S3. ¹H NMR spectrum of LW18 porphyrin (400 MHz, CDCl₃/pyridine-d5, 298 K).

Fig. S4. ¹³C NMR spectrum of LW18 porphyrin (400 MHz, CDCl₃/pyridine-d5, 298 K).

Fig. S5. ¹³C NMR spectrum of LW19 porphyrin (400 MHz, CDCl₃/pyridine-d5, 298 K).

Fig. S6. ¹³C NMR spectrum of LW19 porphyrin (400 MHz, CDCl₃/pyridine-d5, 298 K).

Fig. S8. HRMS of LW18 porphyrin.

Fig. S9. HRMS of LW19 porphyrin.

2. Device fabrication

FTO glass plates (3 mm thickness, 7 Ω /square, Nippon Sheet Glass) were cleaned in detergent solution using the ultrasonic bath for 15 min and then rinsed with deionized water and ethanol for 15 min. A 7.5 µm thick transparent layer of 20 nm TiO₂ particles was first printed on the FTO conducting glass electrode and then coated with a 5-µm thick second layer of 400 nm light scattering anatase particles (WER2-O, Dyesol). The thickness of film was measured using a profilometer (DEKTAK, VECCO, Bruker). After treated with 40 mM aqueous TiCl₄ at 70 °C for 30 min, the TiO₂ film was first sintered at 500 °C for 30 min and then cooled to about 80 °C in air. The details for the preparation of the 20 nm TiO₂ particles and TiO₂ films have been described elsewhere.⁵ Then the TiO₂ film electrodes were dipped into a 200 µM dye solution in a mixture of toluene and ethanol (volume ratio, 1:1) at room temperature for 3 h. After being washed with ethanol and dried by air flow, the sensitized titania electrodes were assembled with thermally platinized conductive glass electrodes. The working and counter electrodes were separated by a 25 µm thick hot melt ring (Surlyn, DuPont) and sealed by heating. The internal space was filled with liquid electrolytes using a vacuum back filling system. The iodine based electrolyte (coded as W30) for devices was 0.1 M LiI, 0.05 M I₂, 0.6 M PMII, 0.5 M 4tert-butylpyridine in a 15/85 (v:v) mixture of valeronitrile and acetonitrile.

3. Photovoltaic characterization

A 450 W xenon light source solar simulator (Oriel, model 9119) with AM 1.5G filter (Oriel, model 91192) was used to give various irradiance at the surface of the solar cell. The current-voltage characteristics of the cell under these conditions were obtained by applying external potential bias to the cell and measuring the generated photocurrent with a Keithley model 2400 digital source meter (Keithley, USA). Incident photon-to-electron conversion efficiency (IPCE) spectra were recorded with a Keithley 2400 source meter as a function of wavelength under a constant white light bias of approximately 1 mW cm⁻² supplied by a white LED array (IQE-LIGHT-BIAS, Newport). The excitation beam comes from a 300 W xenon lamp (Oriel Co.) in combination with a Corstoner 260 monochromator (Newport) and is chopped at approximately 10 Hz. The devices with the photoanode area of 0.16 cm² were tested with a metal mask of 0.09 cm². The photovoltaic parameters were obtained by measuring a number of independently samples individuals.

4. Transient photovoltage decay (TPD) measurements

The determination of the interfacial charge recombination lifetime was performed by the TPD measurement and charge extraction experiments. For the transient decay measurements, a white-light bias was generated from an array of diodes. Blue light pulse diodes (0.05 s square pulse-width, 100 ns rise and fall time) that were controlled by a fast solid-state switch were used as the perturbation source. The voltage dynamics were recorded on a PC-interfaced Keithley 2602A source meter with a 500 ms response time. The perturbation light source was set to a suitably low level for the voltage-decay kinetics to be mono-exponential. By varying the intensity of white-light bias, the recombination lifetime could be estimated over a range of open-circuit voltages. The chemical capacitance of the TiO₂/electrolyte interface at Voc was calculated according to C μ = $\Delta Q/\Delta V$, where ΔV is the peak of the photovoltage transient and ΔQ is the number of electrons injected during the red-light flash. The latter parameter was obtained by integrating a short circuit transient photocurrent that was generated from an identical red-light pulse. Before the LEDs switched to the next light intensity, a charge-extraction routine was executed to measure the electron density in the film. In the charge-extraction techniques, the LED illumination source was turned off within $<1 \mu$ s, whilst, simultaneously, the cell was switched from open circuit to short circuit. The resulting current, as the cell returned to V=0 and J=0, was integrated to give a direct measurement of the excess charge in the film at that V_{OC} value.

5. Spectrum and electrochemical characterization of LW17-LW19

The UV-visible absorption spectra were observed with a PE950 spectrophotometer and Fluorescent emission spectra were obtained with a Jasco FP-6500 spectrophotometer. The TRPL decays were recorded with Edinburgh instruments (FLSP920 spectrometers). The excitation light source was a picosecond pulsed light-emitting diodes centered at 445 nm, operated at a frequency of 10 MHz. The TiO_2 nanoparticles were screen-printed on quartz substrates. The substrates coated with nanoparticles were immersed 200 μ M dye solution, followed by rinsing and drying to remove the excess dye. FT-IR spectra were recorded on a Bruker VERTEX 70. Square-wave voltammograms of various dyes were measured on a CHI660C electrochemical workstation. Glassy carbon electrode was used as the working electrode a platinum wire as the counter electrode, and Ag/AgCl (2 M LiCl in EtOH) as the reference electrode.

Figure S10. FT-IR spectra of LW17, LW18, and LW19.

Figure S11. Normalized UV-visible spectra of LW17, LW18, and LW19 in THF (black curve) and on TiO₂ films (transparent layers 2.3 μ m thick of 20 nm TiO₂ particles) in air (red curve).

Figure S12. Cyclic voltammograms of Zn(II)-porphyrin dyes in THF at a scan rate of 50 mV/s at room temperature with 0.1 M tetra-n-butylammonium hexafluorophosphate (TBAPF₆) as the supporting electrolyte.

6. The calculated energy-level diagram

Figure S13. Energy-level diagram of the LW17-LW19 porphyrins by density-functional theory (DFT).

Reference:

- J. F. Lu, X. B. Xu. Z. H. Li, K. Cao, J. Cui, Y. B. Zhang, Y. Shen, Y. Li, J. Zhu, S. Y. Dai, W. Chen, Y. B. Cheng, M. K. Wang, *Chem. Asian J.*, 2013, 8, 956–962.
- J. L. Fillaut, J. Perruchon, P. Blanchard, J. Roncali, S. Golhen, M. Allain, A. Migalsaka-Zalas, I. V. Kityk, B. Sahraoui, Organometallics, 2005, 24, 687-695.
- 3. T. Suzuki, Y. Ota, Y. Kasuya, M. Mutsuga, Y. Kawamura, H. Tsumoto, H. Nakagawa, M. G. Finn and N. Miyata, *Angew. Chem. Int. Edit.*, 2010, **49**, 6817-6820.
- 4. H. M. Zhan, S. Lamare, A. Ng, T. Kenny, H. Guernon, W. K. Chan, A. B. Djurisic, P. D. Harvey and W. Y. Wong, *Macromolecules*, 2011, 44, 5155-5167.
- C. Y. Chen, M. K. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, M. Grätzel, ACS Nano, 2009, 3, 3103–3109