Supporting information

Calculation of TOF for NiP catalysts

Calculation of turn over frequencies utilised the surface areas of the catalysts determined by BET and the assumption that each Nitrogen molecule covers 0.162 nm^2 . Both Ni and P sites are considered, and hence each N₂ molecule is assumed to cover two sites. The turnover numbers were calculated as follows.

Material	Density / g cm ⁻³	Molar mass / g mol ⁻¹	Molar volume / cm ³ mol ⁻¹	Surface site density / cm ⁻³		
Ni₂P	7.35	148.36	20.19	2.00x10 ¹⁵		
$Ni_{12}P_5$	7.53	859.19	114.14	6.31x10 ¹⁴		

Surface site density

#atoms in 1 cm³ = N(atoms in formula) xN_A/V_M

atoms in 1 cm² = ((#atoms)^{1/3})² = (#atoms)^{2/3}

Roughness Factor of electrode

$$R_f\left(\frac{cm^2}{cm^2}\right) = Loading\left(\frac{mg}{cm^2}\right) \times 0.001\left(\frac{g}{mg}\right) \times Specific \ area\left(\frac{m^2}{g}\right) \times 10000\left(\frac{cm^2}{m^2}\right)$$

Specific current density

$$j_{sp}\left(\frac{mA}{cm^2}\right) = j_{obs}\left(\frac{mA}{cm^2}\right)R_f\left(\frac{cm^2}{cm^2}\right)$$

Specific molecular production rate

For the reaction $2H^++2e^ H_2$, n=2

$$Prod_{sp}\left(\frac{molecule}{cm^{2} \cdot s}\right) = j_{sp}\left(\frac{mA}{cm^{2}}\right) 0.001\left(\frac{A}{mA}\right) \frac{1}{Faraday}\left(\frac{1}{C \cdot mol^{-1}}\right) \frac{1}{n}(unitless)N_{A}\left(\frac{molecule}{mol}\right)$$

Site density per specific area

$$AtomsIncc\left(\frac{1}{cm^{3}}\right) = \frac{N(atoms in formula)N_{A}(mol^{-1})}{V_{M}(cm^{3}mol^{-1})}$$
$$Sites_{sp}\left(\frac{1}{cm^{2}}\right) = \left(AtomsIncc\left(\frac{1}{cm^{3}}\right)\right)^{2/3}$$

Turnover frequency

Catalyst	Loading	SA	Rf	Site density	-j-0.10V,sp	-j.0.20V,sp	TOF-0.1V	TOF-0.2V	Ref
	/mg cm ⁻²	$/m^2 g^{-1}$		/cm ⁻³	/µA cm ⁻²	/µA cm ⁻²	/s ⁻¹	/s ⁻¹	
$Ni_2P_{as\ recv}$	0.15	1	1.5	2.00×1015	89	673	0.140	1.051	this work
Ni ₂ P _(6hr)	0.15	1.18	1.8	2.00×1015	85	1110	0.132	1.737	this work
Ni ₂ P _(9hr)	0.15	1.38	2.1	2.00×1015	62	1270	0.096	1.975	this work
$Ni_{12}P_5$	0.15	16.1	24.1	6.30×1014	4	16	0.019	0.081	this work
Ni ₂ P	1.0	32.8	328	2.00×1015	10	320	0.015	0.500	1
CoP ^b	0.9	59.1	532	2.45×1015	48	NR	0.061	NR	2
MoS ^a	NR	NR	90	1.11×10 ¹⁵	NR	111	NR	0.312	3

(a) loading not provided in text, but roughness factor provided in supplementary materials; NR: not reported

Bode plot of Ni_2P (6hr ball milled) as a function of the applied overpotential. Symbols: Data, line: fit. Frequency range: 100 kHz to 0.2Hz at 10 points/decade. A sinusoidal perturbation of 10 mV_{pp} was used.

Table giving the equivalent circuit parameters derived using the 2TP model and 2TS model used respectively for Ni_2P and $Ni_{12}P_5$ based electrodes as a function of the applied overpotential. For Ni_2P based electrodes, R_s corresponds to the solution resistance associated with the electrolyte used and R_{CT} with n_1 and R_2 & CPE₂ with n_2 represent the two time constant associated with the *her* reaction in acidic medium.

	η	Rs	R _{ct}	R ₂	CPE _{DL}	CPE ₂	n _{DL}	n ₂
Catalyst	/ V	/ Ω	$/\Omega \text{ cm}^2$	$/\Omega \text{ cm}^2$	/Fcm ⁻² s ⁿ⁻¹	/Fcm ⁻² s ⁿ⁻¹		
J	vs RHE							
	vs. Rife							
Dulle	0.1	15	1 51E±03	7 60E±02	2 22E 11	1 15E 05	0.80	1
	-0.1	4.5	0.00E+0.2	7.00E+02	2.35E-11 2.36E-11	2.01E.05	0.89	1
N1 ₂ P	-0.13	4.5	5.09E+02	1.90E+02	2.30E-11	2.01E-05	0.83	1
	-0.25	4.5	3.36E+02	2.88E+01	2.40L-11 2.36E-11	3.15E-05	0.82	1
	-0.3	4.5	2.17E+02	2.08E+01	2.30E-11 2.29E-11	7 29E-05	0.82	1
	-0.35	4.5	1.52E+02	1.16E+01	2.27E-11 2.33E-11	1 39E-04	0.81	1
	-0.4	4 5	1.32E+02	6.60E+00	2.35E 11 2.26E-11	2 34E-04	0.8	1
6 hr ball	-0.025	4.5	3 45E+03	2.53E+03	1 24E-10	1 32E-06	0.84	0.55
milled	-0.05	4.5	1.67E+03	1.19E+03	1.47E-10	5.00E-06	0.86	0.35
Ni D	-0.1	4.5	4.44E+02	3.47E+02	1.27E-10	8.68E-06	0.95	0.3
1 NI 21	-0.2	4.5	4.69E+01	2.38E+02	1.32E-10	1.63E-05	0.9	0.27
	-0.3	4.5	1.49E+01	8.50E+01	1.47E-10	2.35E-05	0.7	0.21
	-0.4	4.5	9.03E+00	3.40E+01	1.32E-10	4.68E-05	0.66	0.14
9 hr ball	-0.1	4.5	6.57E+02	5.17E+02	1.59E-10	8.05E-06	0.87	0.3
milled	-0.15	4.5	2.54E+02	1.79E+02	1.43E-10	1.58E-05	0.85	0.23
Ni P	-0.2	4.5	4.57E+01	3.97E+01	1.64E-10	3.67E-05	0.71	0.18
2	-0.3	4.5	1.72E+01	7.25E+00	1.61E-10	2.26E-05	0.7	0.17
	-0.35	4.5	1.43E+01	3.93E+00	1.64E-10	6.79E-05	0.63	0.03
	η	Rs	\mathbf{R}_{1}	\mathbf{R}_2	CPE ₁	CPE ₂	\mathbf{n}_1	n ₂
Catalyst								
j	/ V	/ Ω	$/\Omega \ cm^2$	$/\Omega~cm^2$	/10 ⁻³	/10 ⁻⁶		
	vs. RHE				Fcm ⁻² s ⁿ⁻¹	Fcm ⁻² s ⁿ⁻¹		
NI: D	0.1	4.5	1.776+04	6.25E+02	9 20E 10	5 64E 0C	0.0	0.72
$N1_{12}P_5$	-0.1	4.5	0.07E+02	0.23E+02	0.52E-12	5.04E-00	0.9	0.75
(series	-0.15	4.5	8.8/E+03	2.32E+02 1.16E+02	4.00E-12 1.71E 12	5.70E-06	0.87	0.75
model)	-0.2	4.5	4.4/E=03	$1.10E \pm 02$	7.68E 12	5.73E-00	0.9	0.74
	-0.25	4.5	2.34E+03	+.39E+01	/.00E-13	5.66E.06	0.9	0.71
	-0.3	4.5	6 59E+02	9.66E+00	4.23E-13 4 10E-13	5.00E-00	0.9	0.09
	-0.33	6.1	4.27E+02	7.25E+00	3 99E-13	5.73E-06	0.95	0.75
	-0.4	0.1	7.2/L+02	7.2515+00	5.776-15	J.72E-00	0.7	0.07

<u>References</u>

- 1. E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis and R. E. Schaak, *Journal of the American Chemical Society*, 2013, **135**, 9267-9270.
- 2. E. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis and R. E. Schaak, *Angew. Chem.-Int. Edit.*, 2014, **53**, 5427-5430.
- 3. J. D. Benck, Z. B. Chen, L. Y. Kuritzky, A. J. Forman and T. F. Jaramillo, *ACS Catalysis*, 2012, **2**, 1916-1923.