Facile Synthesis of Mesoporous Mn₃O₄ Nanorods as a Promising Anode Material for High Performance Lithium-Ion Batteries

Zhongchao Bai,^a* Xiangyu Zhang,^a Yuwen Zhang,^a Chunli Guo,^aBin Tang,^a

^a Research Institute of Surface Engineering, Taiyuan University of Technology,

Taiyuan, 030024, China. Tel.: +86 351 6010540. E-mail: baizhongchao@tyut.edu.cn

Figure SI1. SEM image of the synthesized nonporous Mn₃O₄ nonarods.

Figure SI2. Cyclic voltammograms of the nonporous Mn_3O_4 nanorods at a rate of 0.1 mV s⁻¹ in the voltage of 0.01-3.0 V vs. Li/Li⁺.

Figure SI3. The 1st and 2nd charge-discharge profiles of nonporous Mn_3O_4 nanorods

at a current density of 500 mA g^{-1} in the range of 0.01-3.0 V.

Figure SI4. Cycling performance of nonporous Mn_3O_4 nanorods at a current density of 500 mA g⁻¹.