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L Synthesis of Rh-embedded core/shell silica microspheres (Rh@SiO5).

Core/shell SiO, microspheres (0.25 g) with core diameters of ~300 nm and the shell
thicknesses ranging from 20 to 30 nm were dispersed in 50 mL of ethanol in a 100 mL round-
bottom flask. The core/shell silica microspheres were used as supports for embedding
rhodium nanoparticles (NPs). Detailed procedures are described in our previous report.! The
solution was sonicated for 1 h to disperse the core/shell silica microspheres without
agglomeration followed by dropwise addition of 0.2 mL of 3-aminopropyltrimethoxy-silane
(APTMS). The reaction mixture was then vigorously stirred for 6 h at 50 °C to bind the
APTMS molecules onto the surfaces of the silica microspheres. The amine-functionalized
silica microspheres were purified by centrifuging the microspheres, discarding the supernatant,
and re-dispersing the microspheres in ethanol. To load Rh into the microspheres, rhodium
chloride hydrate (0.04 g, 1.9 x 10 mol) in 10 mL of distilled water was added to the
functionalized silica microspheres in 40 mL of ethanol, and the mixture was stirred for 12 h at
room temperature. The reaction yielded a light violet solution, indicating the deposition of Rh
NPs on the silica surface. After centrifuging the solution, the supernatant was discarded and
the microspheres were washed twice with ethanol. The Rh-loaded silica microspheres were
dried in an oven at 100 °C and annealed at 750 °C for 20 h under a reducing atmosphere

(Ar/H, = 95:5) to yield Rh-embedded microspheres (Rh@Si0O,.).
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I1. Tables

Table S1. EDX elemental and ICP-AES analyses results for Rh/Ni(OH),@SiO,-1T,

Rh/Ni(OH),@Si10,-2T, and Rh/Ni(OH),@Si10,-3T. ICP-AES data are in round brackets.

Element Niwt % Rh wt % Siwt % O wt %
Rh/Ni(OH),@SiO,-1T 26.71 (26.64) 2.66 (2.70) 48.32 (33.01) 22.31(37.63)
Rh/Ni(OH),@Si0,-2T 31.81 (31.14) 3.65(4.32) 32.95 (30.12) 31.59 (34.42)
Rh/Ni(OH),@Si0,-3T 45.38 (44.20) 5.20 (6.36) 21.89 (23.07) 27.53 (26.36)

Table S2. Catalytic activities of various alloy catalysts for the H, production from hydrous

hydrazine
No. Catalysts Catalyst/hydrazine Time Temp  H, selectivity Surface area Concentration of hydrazine Ref. Remark
(molar ratio) (h) (C) (%) (m?¥g) in water (M)
1 RWNi@Si0,-3T 1/10 15 25 >994 180.2 0.5 This work ~ Rh contents
6.35 wt%
2 Nig oslto o5 1/10 18.0 25 100 4.97 0.5 30 18h
3 Nig 20Rhy 59 1/10 267 25 100 55.6 0.5 36 Rh contents
87.50wt%
4 Nig Pdp 49 1/10 317 50 >80 499 0.5 33 50°C
5 NiFe 1/10 3.17 70 100 0.5 34 70°C
6  RhNi@graphene 1/10 0.82 25 100 38 5 MNaOH
7 Rh NPs 1/10 3.00 25 438 60.0 0.5 29 Rh contents
100 wt%
8 Nip 0Pty 01 1/10 2.00 50 100 50.0 0.5 31 50°C
9 Nig ooRlg 19 1/10 4.50 50 100 0.5 37 Rh contents
16.30wt%




III.  Figures

Fig. S1 Representative TEM image of Ni-coated microspheres prepared using core SiO,
microspheres as templates instead of core/shell SiO, microspheres. The microspheres were

synthesized via the procedure used for the synthesis of Ni(OH),@Si10, microspheres.
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Fig. S2 Powder XRD patterns of Rh/Ni(OH),@SiO,. A very broad peak at ~20° is due to
Si0O;.
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Fig. S3 XPS data for Rh/Ni@SiO,-1T (black line), Rh/Ni@SiO,-2T (red line), and

Rh/Ni@Si0,-3T (blue line) in the regions of (a) Ni 2p, (b) Rh 34, (c) Si 2p, and (d) O 1s.
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Fig. S4 Nitrogen adsorption and desorption isotherms of (a) core/shell SiO,, (b) Rh/Ni@SiO,-

IT, (c) Rh/Ni@Si0,-2T, and (d) Rh/Ni@SiO,-3T. The pore-size distributions of (e) core/shell

Si0,, (f) Rh/Ni@SiO,-1T, (g) Rh/Ni@SiO,-2T, and (h) Rh/Ni@SiO,-3T were calculated

using the Barrett-Joyner-Halenda method; the average pore widths of core/shell SiO,,

Rh/Ni@Si0,-1T, Rh/Ni@Si0,-2T, and Rh/Ni@SiO,-3T were 4.3 nm, 4.7 nm, 5.4 nm, and

5.6 nm, respectively.



Fig. S5 Rh/Ni@Si0,-3T microspheres were separated after the catalytic reactions using a

permanent magnet. They were recovered and reused as catalysts.
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Fig. S6 Powder XRD patterns of Rh@SiO,, Ni@SiO,, and Rh/Ni@Si0,-3T. The intensities

of Rh@SiO, are very weak compared to those of Ni@Si0O, and RhW/Ni@Si0,-3T.
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Fig. S7 (a) HAADF-STEM image of Rh/Ni(OH),@SiO,-3T. EDX elemental mapping images

of O (b), Ni (c), Si (d), and Rh (e).
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