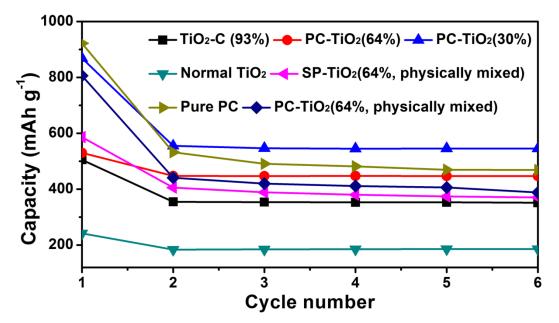
Supporting information for


Highly dispersion of TiO₂ nanocrystals within porous carbon towards tunable lithium storage ability and its battery application versus LiNi_{0.5}Mn_{1.5}O₄

Hai Ming,^{*a,b*} Jun Ming,^{**b*} Seung-Min Oh,^{*b*} Eung-Ju Lee,^{*b*} Hui Huang,^{*c*} Qun Zhou,^{*a*} Junwei Zheng,^{***a} and Yang-Kook Sun^{**b*}

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China. E-mail: jwzheng@suda.edu.cn;

^b Department of Energy Engineering, Hanyang University, Seoul, 133-791, Republic of Korea; Email: yksun@hanyang.ac.kr; mingjun6297@gmail.com;

^c Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key, Laboratory for Carbon Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.

Fig. S1 Comparative performances of TiO_2 -C(93%), PC-TiO_2(64%), PC-TiO_2(30%), normal TiO_2 nanoparticls, PC-TiO_2(64%, physically mixed) and SP-TiO_2 (64%, physically mixed) electrodes under the current density of 50 mA g⁻¹.