Supporting Information

High storage capacities and separation selectivity of C2 hydrocarbons over methane in the metal-organic framework Cu-TDPAT

Kang Liu, Dingxuan Ma, Baiyan Li, Yi Li, Kexin Yao, Zhijuan Zhang, Yu Han and Zhan Shi*

Section I. Sample Preparation

All reagents were purchased from Sigma-Aldrich or Acros and used as received. Cu-TDPAT was synthesized according to previously published methods.¹ Cu-TDPAT was prepared by mixing 2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine (H₆TDPAT) (0.030g, 0.049mmol) with Cu(NO₃)₂·3H₂O (0.164g, 0.68mmol) in 2 mL of DMA, 2 mL of DMSO, 100 μ L of H₂O and 0.9 mL of HBF₄ in a small vial and heated at 85 °C for 3 d.

Section II. PXRD Analysis

PXRD data were collected on a Rigaku D/max 2550 Powder X-ray Diffractometer.

Figure S1. The PXRD data of Cu-TDPAT showing good agreement with simulated one for as-synthesized, methanol-exchanged, activated and after adsorbed sample.

Section III. Gas Sorption Measurements

Gas sorption experiments at 273K and 298K were performed on a Micrometrics ASAP 2020 surface area analyzer. Before analysis, Cu-TDPAT was soaked in methanol for 3 days with methanol refreshing every 2 hours. Then, methanol-exchanged sample was charged into a sample tube and activated at 120 °C for 10 hours by using the "outgas" function of the surface area analyzer.

Figure S2. CH₄, C₂H₂, C₂H₄ and C₂H₆ adsorption isotherms for Cu-TDPAT at 273 K.

Section IV. Calculations of the Isosteric Heats of Gas Adsorption (Qst)

A virial-type² expression comprising the temperature-independent parameters a_i and b_j was employed to calculate the enthalpies of adsorption for CH₄, C₂H₂, C₂H₄ and C₂H₆ (at 273 and 298K) on Cu-TDPAT. In each case, the data were fitted using the equation: $\Box \Box$

$$\ln P = \ln N + 1/T \sum_{i=0}^{m} a_i N^i + \sum_{j=0}^{n} b_j N^j (1)$$

Here, *P* is the pressure expressed in Torr, *N* is the amount adsorbed in mmol/g, *T* is the temperature in K, a_i and b_j are virial coefficients, and *m*, *n* represent the number of coefficients required to adequately describe the isotherms (*m* and *n* were gradually increased until the contribution of extra added *a* and *b* coefficients was deemed to be statistically insignificant towards the overall fit, and the average value of the squared deviations from the experimental values was minimized). The values of the virial coefficients a_0 through a_m were then used to calculate the isosteric heat of adsorption using the following expression.

$$Q_{st} = -R\sum_{i=0}^{m} a_i N^i(2)$$

 Q_{st} is the coverage-dependent isosteric heat of adsorption and *R* is the universal gas constant. The heats of varieties of gases sorption for Cu-TDPAT in this manuscript are determined by using the sorption data measured in the pressure range from 0-1 bar (273 and 298K), which is fitted by the virial-equation very well.

Figure S3. The CH₄ sorption isotherms for Cu-TDPAT at 273 (purple) and 298 K (orange).

Figure S4. The details of virial equation (solid lines) fitting to the experimental CH₄ adsorption data (symbols) for

Figure S5. The CH₄ adsorption enthalpies of Cu-TDPAT.

Figure S6. The C₂H₂ sorption isotherms for Cu-TDPAT at 273 (purple) and 298 K (orange).

Figure S7. The details of virial equation (solid lines) fitting to the experimental C_2H_2 adsorption data (symbols) for Cu-TDPAT.

Figure S8. The C₂H₂ adsorption enthalpies of Cu-TDPAT.

Figure S9. The C₂H₄ sorption isotherms for Cu-TDPAT at 273 (purple) and 298 K (orange).

Figure S10. The details of virial equation (solid lines) fitting to the experimental C_2H_4 adsorption data (symbols) for Cu-TDPAT.

Figure S11. The C₂H₄ adsorption enthalpies of Cu-TDPAT.

Figure S12. The C₂H₆ sorption isotherms for Cu-TDPAT at 273 (purple) and 298 K (orange).

Figure S13. The details of virial equation (solid lines) fitting to the experimental C_2H_6 adsorption data (symbols) for Cu-TDPAT.

Figure S14. The C₂H₆ adsorption enthalpies of Cu-TDPAT.

Section V. Calculations of selectivities based on the Henry's Law selectivity.

Figure S28. Virial analysis of the adsorption data for CH₄ on Cu-TDPAT at 273 K: Low pressure data.

Figure S28. Virial analysis of the adsorption data for C₂H₂ on Cu-TDPAT at 273 K: Low pressure data.

Figure S28. Virial analysis of the adsorption data for C₂H₄ on Cu-TDPAT at 273 K: Low pressure data.

Figure S28. Virial analysis of the adsorption data for C₂H₆ on Cu-TDPAT at 273 K: Low pressure data.

Figure S28. Virial analysis of the adsorption data for CH₄ on Cu-TDPAT at 298 K: Low pressure data.

Figure S28. Virial analysis of the adsorption data for C₂H₂ on Cu-TDPAT at 298 K: Low pressure data.

Figure S28. Virial analysis of the adsorption data for C₂H₄ on Cu-TDPAT at 298 K: Low pressure data.

Figure S28. Virial analysis of the adsorption data for C₂H₆ on Cu-TDPAT at 298 K: Low pressure data.

Section VI. Breakthrough experiments

The breakthrough separation experiments were conducted at 298 K on a homemade apparatus. Detailed information of the setup can be found in our previous publication.³ In a typical experiment, 500 mg of porous sorbent was thoroughly ground and packed into a quartz column (5.8 mm I.D. \times 150 mm) with silica wool filling the void space. The sorbent was in situ activated in the column with a helium flow (10 cm³ min⁻¹) at 393 K for 1 h before the temperature of the column was decreased to 298 K. The flow of He was then turned off while a dry gas mixture at 10.0 cm³ min⁻¹ was sent into the column. The effluent from the column was monitored using a GC with a flame ionization detector (GC-FID) or mass spectrometer (MS). The dead volume was determined using the same column after adsorption saturation.

Figure S29. Schematic illustration of the apparatus used for the breakthrough experiments.

Figure S30. Column breakthrough experiment (Run 1) in Cu-TDPAT.

Figure S31. Column breakthrough experiment (Run 2) in Cu-TDPAT.

Figure S32. Column breakthrough experiment (Run 3) in Cu-TDPAT.

Figure S33. Column breakthrough experiment (Run 4) in Cu-TDPAT.

Figure S34. Column breakthrough experiment (Run 5) in Cu-TDPAT.

Figure S35. Column breakthrough experiment (Run 6) in Cu-TDPAT.

Section VII. Theoretical calculations

All calculations were performed with the Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional and the double numerical plus polarization basis set using the program DMol3.¹² The cluster models representing the Cu cluster and the ligand were cut from the single-crystal structure and saturated by dangling H atoms. C2 molecules were manually put close to the Cu cluster and ligand, respectively. Geometry optimizations were performed with all non-H atoms in the cluster models fixed. Different C2 configurations were tested, and the ones with the strongest host-guest interactions were saved.

Figure S36. DFT optimized geometry for CH₄. Close contact distances, in Å, are marked. Green, red, gray, blue and light blue represent Cu, O, C, N and H atoms, respectively.

Material	BET (Langmuir) SA	Pore volume	C ₂ H ₂ uptake	Q _{st}	Ref.
	$[m^2 g^{-1}]$	$[cm^3 g^{-1}]$	$[cm^3 g^{-1}]$	[kJ mol ⁻¹]	
HKUST-1	1401 (2095)	0.76	201	30.4	4
CoMOF-74	1018 (1504)	-	197	50.1	5
NOTT-101	(2930)	1.05	184	37.1	6
Cu-TDPAT	1938 (2608)	0.93	178	42.5	This work
PCN-16	(2810)	1.00	176	44.2	6
Cu ₂ (ebtc)	1852 (2844)	1.00	160	34.5	7
Cu-TDPAH	2171 (2540)	0.91	156	23.5	8
Cu ₄ L ^a	1115 (1722)	0.61	154	-	9
ZJU-60a	1627 (2394)	0.87	151	17.6	10
UTSA-20	(1894)	0.67	150	30.8	6

Table S1. Acetylene adsorption on some porous MOFs at room temperature and atmospheric pressure.

^a H_8L =tetrakis[(3,5-dicarboxyphenoxy)methyl]methane.

Table S2. Virial graph analysis data for 1 and separation selectivities of C_2 hydrocarbons and carbon dioxide over methane.

Adsorbate	Т	K_H	A_0	A_{I}	R ²	S _{ij} ^[a]	Q_{st}
	[K]	[mol g ⁻¹ Pa ⁻¹]	[ln(mol g ⁻¹ Pa ⁻¹)]	[gmol ⁻¹]			[kJmol ⁻¹]
CH ₄	273	2.935 ×10-8	-17.344±0.000	-131.492±0.590	0.99990		20.7
	298	1.364×10 ⁻⁸	-18.110±0.001	-126.910±2.158	0.99856		
C ₂ H ₂	273	4.529×10-6	-12.305±0.083	-432.204±17.631	0.99173	154.3	42.5
	298	1.734×10 ⁻⁶	-13.265±0.036	-473.041±8.643	0.99833	127.1	
C ₂ H ₄	273	3.660×10-6	-12.518±0.040	-418.391±7.066	0.99858	124.7	49.5
	298	1.159×10 ⁻⁶	-13.668±0.006	-410.502±1.510	0.99993	85.0	
C ₂ H ₆	273	4.817×10-7	-14.546±0.008	-141.468±1.710	0.99927	16.4	30.2
	298	1.644×10 ⁻⁷	-15.621±0.001	-119.121±0.998	0.99965	12.1	

[a] The Henry's law selectivity for gas component i over CH_4 at the speculated temperature is calculated based on the equation: $S_{ij}=K_{H(i)}/K_{H(CH4)}$.

Table S3. The refined parameters for the Dual-site Langmuir-Freundlich equations fit for the pure isotherms of C_2H_2 , C_2H_4 , C_2H_6 , CO_2 and CH_4 in 1 at 298 K.

	N ₁ ^{max}	b ₁	n ₁	N ₂ ^{max}	b ₂	n ₂	R ²
	[mmol/g]	[kPa ⁻¹]		[mmol/g]	[kPa ⁻¹]		
C ₂ H ₂	1.619158	1.917854	0.675008	23.852281	0.023573	0.587391	0.999971
C ₂ H ₄	4.202824	0.188869	0.763954	48.326749	0.005383	0.586646	0.9999996
C ₂ H ₆	2.788607	0.001236	1.677920	15.635443	0.021207	0.651757	0.9999999
CH ₄	1.711350	0.006581	0.847463	5.483669	0.000774	1.164892	0.9999999

Table S4. Pore characteristics of Cu-TDPAT and Cu-TDPAH.

	Cu-TDPAT	Cu-TDPAH
L [Å] ^[a]	5.0	5.9
cub-Oh size [Å]	12	12
T-Td size [Å]	9.1	10.4
T-Oh size [Å]	17.2	17.2
BET SA [m ² g ⁻¹]	1938	2171
Pore volume [cm ³ g ⁻¹] ^[b]	0.93	0.91
Total accessible volume [%] ^[c]	70.2	71.7
Density [g cm ⁻³]	0.782	0.775
OMS Density [per nm ³]	1.76	1.72
LBS Density [per nm ³]	3.5	5.4

[a] L is defined as the distance (Å) between the center of the ligand and the center of a terminal benzene ring. [b] Pore volumes were calculated from N_2 isotherms. [c] The total accessible volumes are calculated using the PLATON/VOID routine.¹¹

References:

- B. Li, Z. Zhang, Y. Li, K. Yao, Y. Zhu, Z. Deng, F. Yang, X. Zhou, G. Li, H. Wu, N. Nijem, Y. J. Chabal, Z. Lai, Y. Han, Z. Shi, S. Feng and J. Li, *Angew. Chem. Int. Ed.* 2012, **51**, 1412-1415.
- 2. J. L. C. Rowsell, O. M. Yaghi, J. Am. Chem. Soc., 2006, 128, 1304-1315.
- (a) B. Li, Y. Zhang, R. Krishna, K. Yao, Y. Han, Z. Wu, D. Ma, Z. Shi, T. Pham, B. Space, J. Liu, P. K. Thallapally, J. Liu, M. Chrzanowski and S. Ma, *J. Am. Chem. Soc.*, 2014, DOI: 10.1021/ja502119z; (b) H. Wang, K. Yao, Z. Zhang, J. Jagiello, Q. Gong, Y. Han and J. Li, *Chem. Sci.*, 2014, **5**, 620-624; (c) Y. Zhao, K.Yao, B. Teng, T. Zhang and Y. Han, *Energy Environ. Sci.*, 2013, **6**, 3684-3692.
- 4. S. Xiang, W. Zhou, J. M. Gallegos, Y. Liu, B. Chen, J. Am. Chem. Soc., 2009, 131, 12415-12419.
- 5. S. Xiang, W. Zhou, Z. Zhang, M. A. Green, Y. Liu, B. Chen, Angew. Chem., Int. Ed., 2010, 49, 4615-4618.
- 6. Y. He, R. Krishna, B. Chen, Energy Environ. Sci., 2012, 5, 9107-9120.
- 7. Y. Hu, S. Xiang, W. Zhang, Z. Zhang, L. Wang, J. Bai, B. Chen, Chem. Commun., 2009, 7551-7553.
- K. Liu, B. Li, Y. Li, X. Li, F. Yang, G. Zeng, Y. Peng, Z. Zhang, G. Li, Z. Shi, S. Feng, D. Song, *Chem. Commun.*, 2014, 50, 5031-5033.
- Y. Xue, Y. He, S. Ren, Y. Yue, L. Zhou, Y. Li, H. Du, X. You, B. Chen, J. Mater. Chem., 2012, 22, 10195-10199.
- 10. X. Duan, Q. Zhang, J. Cai, Y. Yang, Y. Cui, Y. He, C. Wu, R. Krishna, B. Chen and G. Qian, *J. Mater. Chem. A*, 2014, **2**, 2628-2633.
- 11. A. L. Spek, PLATON: A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2001.
- 12. Materials Studio. San Diego, CA 92121, USA: Accelrys Software Inc., 2005.