

Supplementary Information

Photocatalytic hydrogen evolution using nanocrystalline gallium oxynitride spinel

H. A. Naveen Dharmagunawardhane,^a William R. Woerner,^b Quiyan Wu,^a Huafeng Huang,^c Xianyin Chen,^c Alexander Orlov,^a Peter G. Khalifah,^{c,d} and John B. Parise^{*b,c}

^a Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794, USA

^b Department of Geosciences, Stony Brook University, Stony Brook, New York 11794, USA

^c Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA

^d Department of Chemistry, Brookhaven National Laboratory, Upton, NY, 11973, USA

*John.Parise@stonybrook.edu

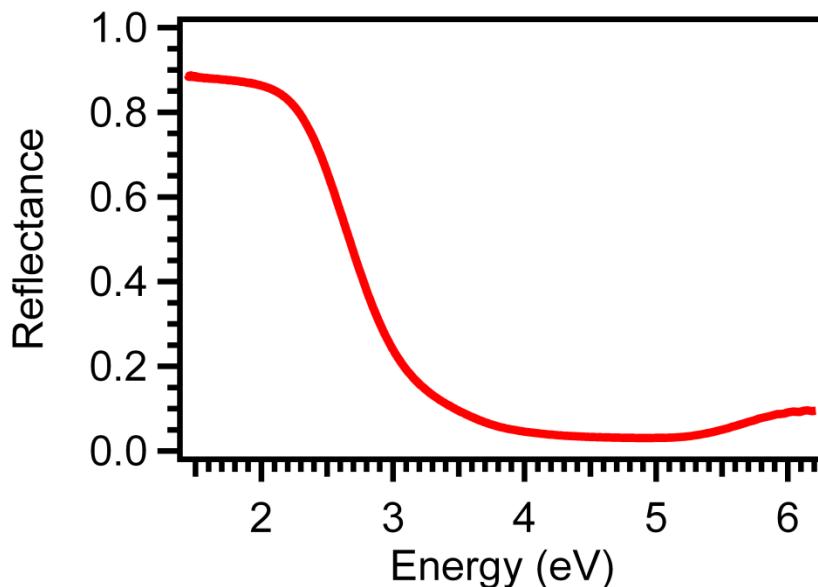


Figure S1. Diffuse reflectance raw data measured for oxynitride spinel synthesized by ammonolysing $\text{Ga}(\text{NO}_3)_3 \cdot \text{H}_2\text{O}$. The upturn above 5 eV is believed to be an experimental artefact attributed to the reduced reflectance of the BaSO_4 100% reflectance standard at high energies.