Supporting information for

Significantly improved photovoltaic performance of the triangular-spiral TPA(DPP-PN)₃ by appending planar phenanthrene units into the molecular terminals

Youming Zhang,^a Xichang Bao,^{*b} Manjun Xiao,^{a,b} Hua Tan,^{*a,c} Qiang Tao,^a Yafei

Wang,^a Yu Liu,^a Renqiang Yang*^b and Weiguo Zhu*^a

^aCollege of Chemistry, Xiangtan University, Key Lab of Environment-Friendly

Chemistry and Application in Ministry of Education, Xiangtan 411105, China

^bQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China

^c Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology,

Guangzhou 510640, China

* Corresponding authors. Tel.: +86-731-58293377; fax: +86-731-58292251(W. Zhu).

Email addresses:

(W. Z.) zhuwg18@126.com,

(R. Y.) yangrq@qibebt.ac.cn,

(X. B.) baoxc@qibebt.ac.cn,

(H. T) tanhua815@126.com.

1. General considerations for characterization

Instrument: Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker DRX 400 spectrometer using tetramethylsilane as a reference in deuterated chloroform solution at 298 K. MALDI-TOF mass spectrometric measurements were performed on Bruker Bifiex III MALDI-TOF. Thermogravimetric analysis (TGA) was conducted under a dry nitrogen gas flow at a heating rate of 10 °C min⁻¹ on a Perkin- Elmer TGA 7. UV-Vis absorption spectra were recorded on a HP-8453 UV visible system. Cyclic voltammetry was carried out on a CHI660A electrochemical work station in a three-electrode cell dipped in a 0.1M tetrabutylammonium hexafluoro- phosphate (Bu₄NPF₆) acetonitrile solution under nitrogen protection at a scan rate of 100 mV/s and room temperature (RT). In this three-electrode cell, a platinum rod, platinum wire and Ag/AgCl electrode were used as a working electrode, counter electrode and reference electrode, respectively.

Device fabrication and characterization: OSCs were fabricated using indium tin oxide (ITO) glass as an anode, Ca(10 nm)/Al(100 nm) as a cathode, and a blend film of the small molecules and [6,6]-phenyl-C61 (or C71)-butyric acid methyl ester (PCBM) as a photosensitive layer. After a 30 nm buffer layer of poly- (3,4-ethylene-dioxythiophene) and polystyrene sulfonic acid (PEDOT: PSS) was spin-coated onto the precleaned ITO glass, the photosensitive layer was subsequently prepared by spin-coating a solution of the polymer and PCBM (1:2.5, *w/w*) in chloroform on the PEDOT:PSS layer with a typical concentration of 10 mg mL⁻¹, followed by annealing at 50 °C for 10 minutes to remove chloroform. Ca (10 nm) and Al (100 nm) were successively deposited on the photosensitive layer in vacuum and used as top

electrodes. The current density-voltage (*J-V*) characteristics were recorded with a Keithley 2420 source measurement unit under simulated 100 mW cm⁻² (AM 1.5G) irradiation from a Newport solar simulator. Light intensity was calibrated with a standard silicon solar cell. The external quantum efficiencies (*EQE*) of solar cells were analyzed using a certified Newport incident photon conversion efficiency (*IPCE*) measurement system.

Hole mobility of the molecules (1:2.5, w/w) blend film was measured according to a similar method described in the literature^[1-2], using a diode configuration of ITO/PEDOT:PSS(40nm)/active layer (180 or 230 nm)/Ca(10 nm)/Al(100 nm) MoO₃ (5 nm)/Ag (80 nm) by taking current-voltage current in the range of 0 - 4 V and fitting the results to a space charge limited form, where the space charge limited current (SCLC) is described by $J = 9\varepsilon_0\varepsilon_r\mu_h V^2/8L^3$, where J is the current density, L is the film thickness of active layer, μ_h is the hole mobility, ε_r is the relative dielectric constant of the transport medium, ε_0 is the permittivity of free space (8.85 × 10⁻¹² F m⁻¹), V is the internal voltage in the device and $V = V_{appl}-V_a-V_{bi}$, where V_{appl} is the applied voltage to the device, V_a is the voltage drop due to contact resistance and series resistance across the electrodes, and V_{bi} is the built-in voltage due to the relative work function difference of the two electrodes.

2. Photovoltaic Properties of the TPA(DPP-PN)₃ based OSCs at different conditions

Figure S1. Current–voltage (*J*–*V*) curves of BHJ solar cells with the TPA(DPP-PN)₃/PC₆₁BM blends at various weight ratios under AM 1.5G illumination (100 mW cm⁻²).

Table S1.	Photovoltaic properties of BHJ solar ce	ll devices with a	a configuration of	f ITO/PEDOT:
	PSS/ TPA(DPP-PN)	3:PC ₆₁ BM/Ca/A	Λ^{la}	

TPA(DPP-P) ₃ :PC ₆₁ BM	$V_{\rm oc}/~{ m V}$	$J_{\rm sc}$ / mA cm ⁻²	FF/ %	PCE _{max} /%
1:1	0.83	5.86	38.99	1.90
1:1.5	0.82	6.88	43.21	2.45
1:2	0.83	7.69	43.90	2.82
1:2.5	0.81	8.12	46.62	3.07
1:3	0.80	7.50	44.21	2.66

^a Measured under AM 1.5 G irradiation (100 mW cm⁻²).

3. Film morphology

Figure S2. Tapping-mode AFM images of the blended films of TPA-3DPP/PC $_{71}BM$ (a) and

TPA(DPP-PN)₃/PC₇₁BM (b) on glass/ITO/PEDOT:PSS substrate.

4. ¹H NMR and MS profiles of PN-BPin, PN-DPP, PN-DPP-Br, TPA-3BPin, TAP-3DPP and TPA(DPP-PN)₃.

Figure S3-1. ¹H NMR profile of PN-BPin

Figure S3-2. ¹H NMR profile of PN-DPP

Figure S3-3. ¹H NMR profile of PN-DPP-Br

Figure S3-4. ¹H NMR profile of TPA-3BPin

Figure S3-5. ¹H NMR profile of TPA-3DPP

Figure S3-6. ¹H NMR profile of TPA(DPP-PN)₃

Figure S3-7. MS profile of PN-DPP

Figure S3-8. MS profile of PN-DPP-Br

Figure S3-9. MS profile of TPA-3BPin

Figure S3-10. MS profile of TPA-3DPP

Figure S3-11. MS profile of TPA(DPP-PN)₃

Reference

- [1]. M. Wang, X.W. Hu, P. Liu, W. Li, X. Gong, F. Huang, Y. Cao, J. Am. Chem. Soc. 2011, 133, 9638.
- [2]. Z.C. He, C.M. Zhong, X. Huang, W.Y. Wong, H.B. Wu, L.X. Chen, Y. Cao, Adv. Mater. 2011, 23, 4636.