Supporting Information

One Pot Synthesis of Ultrasmall MoO_3 Nanoparticles Supported on SiO_2 , TiO_2 , and ZrO_2 Nanospheres: An Efficient Epoxidation Catalyst

Prakash Chandra, Dhananjay S. Doke, Shubhangi B. Umbarkar and Ankush V. Biradar

Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India. E-mail: av.biradar@ncl.res.in, Fax: 020 2590 2633.

Contains:

- S1: Details of instrument used for catalyst characterization
- **S2:** Catalyst characterization by TEM
- S3: Catalyst characterization by SEM for EDAX and metal mapping
- S4: Catalyst characterization by XRD
- **S5:** Catalyst characterization by Raman spectroscopy
- S6: Catalyst surface area analysis by BET method
- S7: Acidity measurement of catalysts by TPD method
- S8: Catalyst characterization by XPS analysis
- **S9**: Results of catalytic recycle studies
- **S10:** TEM analysis of the spent catalyst
- S11: Catalyst leaching studies by hot filtration Vs blank

S1: Details of instrument used for catalyst characterization

A. Powder X-ray analysis: X-ray diffractograms were recorded using a Rigaku X-ray diffractometer (Model DMAX IIIVC) using CuKa (1.5406 Å) radiation from $2\theta=20$ to 80° by 0.1° steps with an integration time of 4 s.

B. Raman analysis: Raman spectra were recorded under ambient conditions on a LabRAM infinity spectrometer (Horiba–Jobin–Yvon) equipped with a liquid nitrogen detector and a frequency doubled Nd-YAG laser supplying the excitation line at 532nm with 1–10mW power. The spectrometer is calibrated using the Si line at 521 cm⁻¹ with a spectral resolution of 3 cm⁻¹.

D. Electron microscopy: Scanning electron microscopy (SEM) measurements were performed on a FEI quanta 200 3D dual beam (ESEM) having thermionic emission tungsten filament in the 3 nm range at 30 kV and HRTEM was done on a Tecnai G2-30 FEI instrument operating at an accelerating voltage of 300 kV. Before analysis, the powders were ultrasonically dispersed in isopropanol, and two drops of isopropanol containing the solid were deposited on a carbon coated copper grid.

E. FT-IR spectroscopy: The acidity of the samples was finely determined using pyridine adsorption by using a Shimadzu 8000 series FTIR spectrometer in the diffuse reflectance infrared Fourier transform (DRIFT) mode. As a pretreatment, the sample was placed in the DRIFT cell and heated to 400 °C under a flow of inert gas (N₂) for 2 h. After cooling to 100 °C, pyridine was introduced in an N₂ flow. The physisorbed pyridine fraction was first removed by flushing the cell with N₂ for 45 min, and the first spectrum was recorded. Then, pyridine was desorbed for 45 min at 100, 150, 200 and 300 °C and spectra were recorded at each temperature. The spectrum of the neat catalyst (before pyridine adsorption) at 100 °C was subtracted from all the spectra.

F. Acidity measurements: The NH₃-TPD experiments were performed using a Micromeritics Autochem 2910 instrument. A weighed amount of the sample (~100 mg) was placed in a quartz reactor, pretreated in a flow of He gas at 500 °C for 1h (ramp rate of 10Kmin^{-1}) and cooled to 100 °C. The catalyst was then exposed to a gas mixture of NH₃ (5% NH₃–95% He, 50 mLmin⁻¹) at 100 °C, followed by evacuation at 100 °C for 3h. Then, the measurement was carried out from 100 °C to 500 °C with a heating rate of 5Kmin⁻¹ in He as a carrier gas at a flow rate of 60 mLmin⁻¹ until ammonia was desorbed completely.

G. BET details: N₂ adsorption–desorption isotherms were recorded at 77 K by using an automated quantasorb instrument from quantachrome. Before each run, a known mass of sample (around 0.200 g) was heated at 200 °C under vacuum for 2.5 h. Specific surface areas were calculated from the linear part of the Brunauer–Emmett–Teller line. Pore-size distributions were obtained by applying the Barrett–Joyner–Halenda (BJH) equation to the desorption branch of the isotherm. The total pore volume was estimated from the N₂ uptake at a P/P_0 value of 0.991.

S2: Catalyst characterization by TEM

a) TEM images of TiO₂ nanoparticles synthesized by reverse micelle method

Fig S2-1: HRTEM image of TiO₂ at (A) 20 nm; (B) 5 nm scale; (C) Particle size distributions and (D) SAED image.

b) TEM images of ZrO₂ nanoparticles synthesized by reverse micelle method

Fig S2-2: HRTEM image of ZrO₂ with ammonia at (A) 20 nm; (B) 5 nm scale; (C) Particle size distributions and (D) SAED image.

S3: Catalyst characterization by SEM for EDAX and metal mapping

a) SEM-EDAX analysis of MoO₃/SiO₂ nanospheres

Fig S3-1: represents the SEM-EDAX of MoO₃/SiO₂ nanospheres

b) EDAX elemental mapping of the MoO₃/TiO₂ nanospheres

Fig S3-2: Showing elemental mapping of the MoO_3/TiO_2 nanospheres; (A) yellow color shows molybdenum atom; (B) green color shows titania atoms; (C) red color shows oxygen atoms

present on surface and (D) MoO_3/TiO_2 on the surface.

c) SEM-EDAX analysis of MoO_3/TiO_2 nanospheres

Fig S3-3: represents the SEM-EDAX pattern of MoO₃/TiO₂

d) EDAX elemental mapping of the MoO₃/ ZrO₂ nanospheres

Fig S3-4: Showing elemental mapping of the MoO_3/ZrO_2 synthesized nanospheres; (A) yellow color shows molybdenum content; (B) green color shows zirconia atoms; (C) red color shows oxygen atoms present on surface and (D) MoO_3/ZrO_2 on the surface.

e) SEM-EDAX analysis of MoO₃/TiO₂ nanospheres

Fig S3-5: represents the SEM-EDAX of MoO₃/ZrO₂ nanospheres.

S4: Catalyst characterization by XRD

a) Powder XRD pattern of (a) titania; (b) MoO₃/TiO₂

Fig S4-1: Powder XRD pattern of (a) titania; (b) MoO₃/TiO₂.

b) Powder XRD pattern (a) ZrO₂; (b) MoO₃/ ZrO₂

Fig S4-2: Powder XRD pattern (a) ZrO₂; (b) MoO₃/ ZrO₂.

S5 Catalyst characterization by Raman spectroscopy

a) Raman spectra of (A) (a) TiO_2 (b) MoO_3/TiO_2

Fig. S5-1: Raman spectra of (A) (a) TiO_2 (b) MoO_3/TiO_2 ; (b) graph shows expanded view in range the 700 - 1200 cm⁻¹ for MoO_3/TiO_2 .

b) Raman spectra of (a) ZrO₂ (b) MoO₃/ZrO₂

Fig. S5-2: Raman spectra of (a) ZrO_2 (b) MoO_3/ZrO_2 .

S6- Catalyst surface area analysis by BET method

Table ST-1. Results of BET surface area of different catalysts

Catalyst	BET surface area (m²/g)	Pore volume (cm ³ /g)	Pore size (Å)
MoO ₃ /SiO ₂	22.79	0.009982	33.4950
MoO ₃ /TiO ₂	89.156	0.09281	20.8203
MoO ₃ /ZrO ₂	139.679	0.009982	34.7939

a) BET surface area measurements of MoO₃/SiO₂; MoO₃/TiO₂; and MoO₃/ZrO₂

Fig.-S6-1: (A) BET surface area isotherms and (B) pore volume distribution curve for MoO₃/SiO₂; MoO₃/TiO₂; and MoO₃/ZrO₂

S7- Acidity measurement of catalysts by TPD method

Fig S7-1: NH₃-TPD profile for (A) MoO₃/SiO₂; (B) MoO₃/TiO₂ and (C) MoO₃/ZrO₂

S8- Catalyst characterization by XPS analysis

Fig. S8-1: XPS spectra for (A) Si 2p; (B) O1s of MoO₃/SiO₂ catalyst.

Fig.S8-2: XPS spectra for (A) Ti 2p; (B) O1s of MoO₃/TiO₂ catalyst.

Fig.S8-3: XPS spectra for (A) Zr 3d; (B) O1s of MoO3/ZrO2 catalyst.

Figure S9: Represents the catalytic recycle study for cyclooctene epoxidation using MoO₃/SiO₂ nanospheres as a catalyst.

Reaction condition: Cyclooctene: 0.285 g (0.0025 mol); Oxidant: (0.0025 mol) 5.5 molar TBHP in decane; Temperature: 80 °C; Solvent: 1,2-dichloroethane (6 g); Catalyst: 0.02 g; Time: 2 h.

S10: TEM analysis of the spent catalyst

Figure S10: (A and B) represents the HRTEM image of spent catalyst MoO_3/SiO_2 at 50 nm and 10 nm scale.

S11: Catalyst leaching studies by hot filtration Vs blank

Figure S 11: Represents % cyclooctene conversion vs. time curve; in the catalytic, hot filtration and blank reactions.

Reaction condition: Cyclooctene: 0.282 g (0.0025 mol); Oxidant: (0.0025 mol) 5.5 molar TBHP in decane; Temperature: 80 °C; Solvent: 1, 2-dichloroethane (6 g); Catalyst: 0.02 g; Time-2 h;