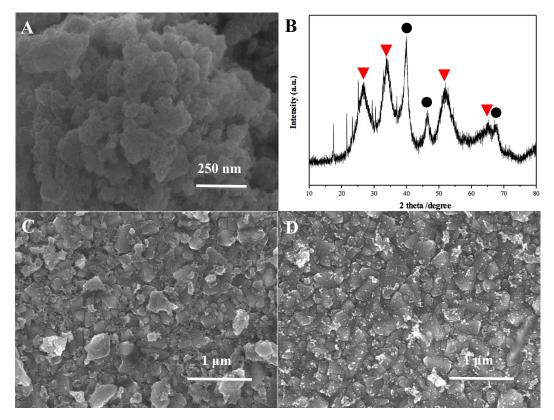
Supporting Information


A Novel Strategy to Prepare Pt-SnO₂ Nanocomposite as Highly Efficient Counter Electrode for Dye-Sensitized Solar Cells[†]

Xiao Chen,^{a†} Yu Hou,^{a†} Shuang Yang,^a Xiao Hua Yang^{*a} and Hua Gui Yang^{*a,b}

 ^a Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

^b Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast, Queensland 4222, Australia.

Correspondence and requests for materials should be addressed to H.G.Y. (email: hgyang@ecust.edu.cn) or X.H.Y. (email: yangxiaohuayou@163.com).

Fig. S1 (A) SEM images of Pt-SnO₂ nanocomposites after annealing at 723 K. **(B)** XRD patterns of Pt-SnO₂ nanocomposites after thermal treatment at 723 K (red triangle: peaks of SnO₂, black circle: peaks of Pt). **(C)** SEM images of Pt-SnO₂ CE on FTO. **(D)** SEM images of Pt CE on FTO.

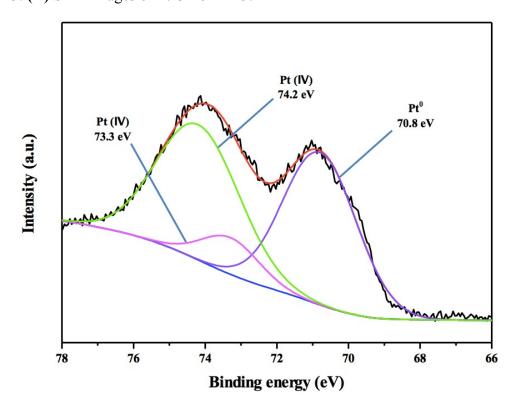


Fig. S2 The Pt4f peaks in the XPS spectra of $Pt-SnO_2$ nanocomposites after annealing at 723 K.

Table S1 Specific surface area, masses of CE materials and total area of differentCEs.

СЕ	Specific surface area/	Mass/	Total area/
	$m^2 g^{-1}$	μg	<i>cm</i> ²
Pt	10.48	6.0	0.63
Pt/SnO ₂	36.96	4.4	1.63