Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting information

Effect of pyrolysis gas

From the nitrogen sorption measurement, the BET surface area of the PNCEs-900-NH₃ (719.4 m²/g) is significantly higher than that of the PNCEs-900-N₂ (104.08 m²/g). Figure S1 displays the pore distribution of the PNCEs-900-NH₃ and PNCEs-900-N₂. The ratio of macropore and the mesoporous is significantly increased for the PNCE-N₂. Moreover, the micropores are significantly increased. This proves that the reactions between carbon and NH₃ involve the replacement of oxygen-bearing species by nitrogen-containing groups and the etching of carbon fragments by the radicals generated by the decomposition of NH₃ at high temperatures, which forms more pores in carbon framework.^[1,2]

Figure S1. N₂ sorption isotherms of the resultant PNCEs carbon catalysts prepared under different atmosphere;

Figure S2. High resolution XPS spectra of Fe 2p N1s (a) PNCEs -1000 (b) NNCEs-1000

Samples	S _{BET} (m ² g ⁻¹)	S _{micro} (m ² g ⁻¹)	S _{ext} (m ² g ⁻¹)	V _{micro} (cm ³ /g)	Vt (cm³/g)
PNCEs-700	432.7	334.08	98.6	0.154	0.329
PNCEs-800	528.2	378.4	149.9	0.173	0.412
PNCEs-900	719.4	497.4	222	0.228	0.553
PNCEs-1000	924.6	502.2	502.17	0.227	0.715
PNCEs-1100	756.6	263.8	492.7	0.117	0.518
NNCEs-1000	523	329.1	194.03	0.151	0.547

Table S1.	Physical	characteristic	of the	PNCEs	synthesized	at	different	tempera	ature
	J							· · · ·	

 S_{BET} : Surface area calculated by the Brunauer-Emmet-Teller(BET) method, S_{micro} : micropore surface area calculated by t-plot method ; S_{ext} : External surface area calculated by t-plot analysis ; V_{micro} =micropore volume calculated by t-plot analysis and V_{tot} =total pore volume at P/P₀=0.995 ;

Figure S3. (a) Normalized XANES of NNCEs-1000 and PNCEs-1000 with reference compounds at the Fe K-edge.

(b) Magnitudes of k3-weighted Fourier-transformed (phase-uncorrected) EXAFS data for NNCE-1000 and PNCEs-1000 with some reference compounds.

Figure S4. Oxygen reduction polarization curves for the catalysts PNCEs-1000 and 20%Pt/C in O_2 -purged 0.5 M H₂SO₄; rotating rate is 1600 rpm. Scan rate=5 mV s⁻

Reference

[1] Wang, X. Q.; Lee, J. S.; Zhu, Q.; Liu, J.; Wang, Y.; Dai, S., Ammonia-Treated Ordered Mesoporous Carbons as Catalytic Materials for Oxygen Reduction Reaction. Chemistry of Materials 22 (7), 2178-2180. [2] Zhong, H. X.; Zhang, H. M.; Liu, S. S.; Deng, C. W.; Wang, M. R., Nitrogen-Enriched Carbon from Melamine Resins with Superior Oxygen Reduction Reaction Activity. *Chemsuschem* 2013, 6 (5), 807-812.