Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Marked Indolyl vs Indolinyl-Substituent Effects on Solid-State Structure, Carrier Mobility and Photovoltaic Efficiency of Asymmetrical Squaraine Dyes

Lin Yang,^{a§} Qianqian Yang,^{b§} Daobin Yang,^a Qian Luo,^a Youqin Zhu,^b Yan Huang,^{a*} Suling Zhao,^{b*}

Zhiyun Lu,^{a*}

^a Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

^b Key Laboratory of Luminescence and Optical Information (Ministry of Education), Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, P. R. China.

Contents

1. Table S1. Summary of crystal data, data collection, and refinement parameters for 1a and 1b.

2. Figure S1. ORTEP drawing of compounds 1a and 1b.

3. Table S2. Comparison of calculated geometries of 1a and 1b with experimental data from X-ray crystal analysis.

4. Figure S2. 3D images obtained by tapping-mode AFM of ASQ:PC₇₁BM (1:8, w/w) composite films.

Compound	1a	1b	
Empirical formula	$C_{40}H_{38}N_2O_4$	C40H36N2O4	
Formula weight	610.72	608.71	
Temperature	140.15 K	143.05 K	
Crystal system	monoclinic	monoclinic	
Space group	$P2_1/n$	$P2_1/n$	
a/Å	13.6013(7)	7.41851(17)	
b/Å	15.3860(6)	40.3306(11)	
$c/{ m \AA}$	15.6472(9)	11.5514(3)	
$lpha/^{\circ}$	90.00	90.00	
$eta / ^{\circ}$	109.803(4)	99.732(2)	
$\gamma/^{\circ}$	90.00	90.00	
Volume/Å ³	3080.8(3)	3406.36(15)	
Ζ	4	4	
$\rho_{calc}mg/mm^3$	1.317	1.187	
m/mm^{-1}	0.673	0.077	
F(000)	1296.0	1288.0	
Crystal size/mm ³	$0.08\times0.04\times0.03$	$0.4\times0.35\times0.3$	
2θ range for data collection	7.462 to 139.114°	5.926 to 52.744°	
Index ranges	$-15 \le h \le 16, -18 \le k \le 18,$	$-9 \le h \le 9, -32 \le k \le 50, -14 \le 1 \le 13$	
Reflections collected	19712	26126	
Independent reflections	5575 [R(int) = 0.1046]	6964 [R(int) = 0.0429]	
Data/restraints/parameters	5575/340/498	6964/0/431	
Goodness-of-fit on F ²	1.020	1.061	
Final <i>R</i> indexes [I>= 2σ (I)]	$R_1 = 0.0777, wR_2 = 0.2034$	$R_1 = 0.0561, wR_2 = 0.1460$	
Final <i>R</i> indexes [all data]	$R_1 = 0.1119, wR_2 = R_1 = 0.0666, wR_2 = 0.2364$ 0.1524		
Largest diff. peak/hole / e Å- 3	0.30/-0.27	0.25/-0.22	

 Table S1. Summary of crystal data, data collection, and refinement parameters for 1a and 1b.

Figure S1. ORTEP drawing (hydrogen atoms removed for clarity, C=blank, N=blue, O=red) of compounds 1a and 1b.

Bond	Experimental	Calculated	Bond/Torsion	Experimental	Calculated		
lengths	Experimental	b)	angles	Experimental	b)		
1a							
C37-N2	1.465(4)	1.475	C36-C24-C35	112.5(3)	111.99		
N2-C23	1.345(4)	1.366	C23-C22-C2	132.5(3)	132.65		
C23-C22	1.386(5)	1.402	C8-N1-C21	120.7(3)	121.56		
C22-C2	1.384(4)	1.386	C8-N1-C11	131.6(3)	127.95		
C2-C1	1.463(4)	1.474	C11-N1-C21	106.9(3)	110.48		
C1-C4	1.458(4)	1.461	C21-C20-C19	104.4(4)	104.62		
C4-C3	1.450(4)	1.464	C19-C18-C17	104.1(5)	104.80		
C3-C2	1.478(4)	1.481	C4-C5-C6	122.8(3)	122.18		
C3-O2	1.244(4)	1.273	C23-C22-C2-C3	5.0(9)	-0.75		
C1-01	1.241(4)	1.270	C3-C4-C5-C6	0.5(6)	0.17		
C4-C5	1.419(4)	1.414	C1-C4-C5-C10	0.0(6)	-0.73		
C8-N1	1.376(4)	1.389	C9-C8-N1-C11	4.1(6)	27.02		
N1-C11	1.428(4)	1.416	C7-C8-N1-C21	-6.2(6)	24.29		
N1-C21	1.518(4)	1.506	C8-N1-C21-C20	78.2(4)	60.55		
1b							
C15-N1	1.470(2)	1.481	C13-C11-C14	113.93(15)	112.09		
N1-C12	1.341(2)	1.360	C12-C19-C20	131.40(17)	132.49		
C12-C19	1.408(2)	1.408	C27-N2-C30	127.60(15)	127.03		
C19-C20	1.374(3)	1.379	C27-N2-C40	125.64(16)	126.01		
C20-C23	1.472(2)	1.479	C30-N2-C40	106.69(15)	106.94		
C23-C22	1.448(3)	1.457	C40-C39-C38	101.54(15)	101.09		
C22-C21	1.449(2)	1.458	C38-C37-C36	102.64(15)	102.19		
C21-C20	1.490(3)	1.487	C22-C24-C25	122.44(15)	121.88		
C21-O1	1.241(2)	1.271	C12-C19-C20-C21	3.6(4)	1.18		
C23-O2	1.238(2)	1.268	C21-C22-C24-C25	-5.1(3)	0.25		
C22-C24	1.433(2)	1.424	C28-C27-N2-C40	36.0(2)	40.66		
C27-N2	1.411(2)	1.414	C27-N2-C40-C39	-0.4(3)	-0.15		
N2-C30	1.401(2)	1.420	C26-C27-N2-C30	33.7(2)	39.78		
N2-C40	1.397(2)	1.405	C23-C22-C24-C29	-3.8(3)	0.40		

Table S2. Comparison of calculated geometries of 1a and 1b with experimental datafrom X-ray crystal analysis^{a)}

^{a)} The bond lengths are in angstroms and the angles are in degrees; ^{b)} Calculated in acetonitrile.

The optimized structures for both compounds have been calculated at B3LYP/6-31G(d) level in acetonitrile. Because the experimental data were obtained in condensed solid phase, yet the computational values derived from liquid phase that are free of stacking effects, compared with the experimental data, some of the optimized torsion angles are slightly larger than the corresponding experimental values.

Figure S2. 3D images obtained by tapping-mode AFM of ASQ:PC₇₁BM (1:8, w/w) composite films. Left: **1a**, Right: **1b**.