Electronic Supplementary Information (ESI)

A facile synthesis for hierarchical porous CeO₂ nanobundles and their superior catalytic performance for CO oxidation

Richuan Rao,*" Ming Yang, b Changshun Li, b Huaze Dong, Song Fang a and Aimin Zhang*b

^a Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui, 230601, PR China. E-mail:raorc123@163.com. ^bKey Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing "Jiangsu, 210093, PR China. Email: zhangam@nju.edu.cn.

Fig.S1 FT-IR spectra of CeO₂ precursors. (a) Nanobundles, (b) Cerium formate.

Fig.S2 TEM image of CeO₂ precursor samples in a formaldehyde-assisted hydrothermal system without carbonate.

Fig.S3 TEM images of CeO_2 precursor samples prepared by controlling different cation type in a formaldehyde-assisted hydrothermal system with carbonate. (A) Sodium ions, (B) Potassium ions.

Fig.S4 TEM images and high-resolution TEM images of CeO₂ nanostructure materials. (A,B) Nanorods, (C,D) Nanowires, (E,F) Nanoparticles.

Morphology	d (nm)	a (nm)	D (nm) ^a	BET (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹) ^b	CO conversion rate at 240°C (µmol m ⁻² s ⁻¹)	T ₅₀ (°C) °
Nanobundles	3.125	5.413	9.2	130.4	0.096412	0.162	213
Nanorods	3.123	5.410	9.9	98.3	0.135062	0.125	223
Nanoparticles	3.124	5.411	10.9	77.4	0.127599	0.064	261
Nanowires	3.113	5.392	8.1	76.9	0.102127	0.023	272

Table S1 Summary of d-spacing, interatomic distance a, BET surface area, pore volume of CeO_2 materials and CO conversion rate and T_{50} for CO oxidation

^a The mean grain size is calculated using Scherrer's equation. ^bThe pore volume, measured at $P/P_0 = 0.975$. ^c the light-off temperature T_{50} , corresponding to 50% conversion of CO.

Fig.S5 H2-TPR profiles of CeO2 materials. (a) Nanobundles, (b) Nanorods, (c) Nanoparticles, (d) Nanowires.