Electronic Supplementary Information

Tailored Design of Palladium Species Grafted on Amino Functionalized Organozinc Coordination Polymer as Highly-Pertinent Heterogeneous Catalyst

Hemant Choudhary, Shun Nishimura & Kohki Ebitani*

School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923 1292, Japan. *E-mail: ebitani@jaist.ac.jp

	bromobenzene phenylbo	$ \begin{array}{c} & & \\ & & $					
Entry	Solvent	t /h	Conv. /%b	Yield /% ^b			
1	Ethanol	0.5	>99	>99			
2°			92.3, 91.4 ^d	92.7, 93.2 ^d			
3 ^e			-	0.5			
4 ^f		1	10.5	0			
5 ^g			0	0			
6	DMF	2	42.9	44.1			
7	Toluene		18.2	23.8			
8	Water		10.6	4.2			
9	DMF:Water (4:1)		44.0	48.0			
10	Ethanol:Water (4:1)	0.5	>99	>99			

Table S1. Effect of solvent on SMC reaction of bromobenzene using 0.5Pd/AZC catalyst^a

^aReaction conditions: Bromobenzene (2 mmol), Phenylboronic acid (3 mmol), K₂CO₃ (4 mmol), Solvent (5 mL), 0.5Pd/AZC (30 mg), 353 K. ^bDetermined by GC using naphthalene as internal standard on the basis of bromobenzene. ^c0.5Pd/AZC (5 mg). ^d1st reuse. ^eWithout bromobenzene. ^fWithout Pd loading (AZC, 5 mg). ^gWithout catalyst.

		Br + B(OH) ₂	0.5Pd/AZC, 3 K ₂ CO ₃ , Etha	anol	\succ	
	bromobenze	ene phenylboronic acio	b	bi	iphenyl	
Entry	PhBr /mmol	Pd /nmol ^b	t /h	Conv. /% ^c	Yield /%c	TON ^d
1 ^e	2	235	1	83.7	88.8	7,576
2	4	47	6	81.6	84.2	71,501
3	15	47	14.5	86.6	85.2	271,320
4	30	47	24.5	80.7	81.3	517,104
5	75	47	40	74.7	64.5	1,029,420
6 ^f	10	4.7	48	94.4	>99	2,106,720

Table S2. Highly efficient SMC reaction by 0.5Pd/AZC catalyst^a

^aReaction conditions: Bromobenzene:Phenylboronic acid:K₂CO₃ (1:1.5:2) (molar ratio), Ethanol (5 mL), 0.5Pd/AZC (1 mg), 353 K. ^bEstimated by the results of ICP-AES analysis of the *x*Pd/AZC. ^cDetermined by GC using naphthalene as an internal standard on the basis of bromobenzene. ^dTON was calculated based on the amount of biphenyl formed. ^e0.5Pd/AZC (5 mg). ^f0.05Pd/AZC.

Fig. S1 Reusability of 0.5Pd/AZC catalyst for the SMC reaction of bromobenzene. *Reaction conditions*: Bromobenzene (2 mmol), phenylboronic acid (3 mmol), K₂CO₃ (4 mmol), 0.5Pd/AZC (1 mg), Ethanol (5 mL), 353 K, 1 h. The reaction time was increased to 3 h for runs 6 and 7.

The activities of Pd/AZC showed gradual decrease from 3^{rd} to 5^{th} run, however, the activity could be re-achieved by increasing the reaction time as seen in 6^{th} and 7^{th} run. Thus, the Pd/AZC could possess its original potential even after 7^{th} run. The observation, increase in activity with the increase in reaction time, indicated that the rate of reaction was affected during recycling runs. We supposed that the accessibility of substrates towards catalyst was compromised by increase in the base (K₂CO₃) amount against the small quantity of Pd/AZC in five catalytic runs.

Entry	Temp.	Time	Pd	Solvent	TBAB/CB	Conv.	Yield
	/K	/h	/µmol (wt%) ^b		ratio ^c	/%d	/%0 ^d
1	353	2	2.4 (5)	Ethanol	0	0.6	8.5*
2				Methanol	0	3.8	7.4*
3				MIBK	0	0	0
4				DMSO	0	0	0
5				CH ₃ CN	0	0	0
6				Acetone	0	0	0
7				1,4-Dioxane	0	0	0
8				DMA	0	0	0
9				DMA:Ethanol	0	0	0
10			14.1 (5)	Ethanol:water(4:1)	0	8.0	22.3*
11	353	4	5.6 (3)	Ethanol	1	58.4	18.4
12			0.7 (0.5)	Ethanol	0.5	49.9	7.4
13	373	6	0.2 (0.5)	Ethanol	1	39.3	3.2
14 ^e					1	72.0	24.8
15				DMF	1	46.8	2.0
16					0	0	0
17				H ₂ O	1	72.0	3.0
18				Ethanol:DMF (3:2)	1	49.6	7.6
19 ^f			2.8 (3)	Ethanol:DMF (1:1)	1	74.5	31.2
20 ^e					1	58.2	34.0
21e					0.5	46.1	30.0
22 ^f				Ethanol:DMF (2:3)	1	76.1	27.8
23 ^f				Ethanol:DMF (1:4)	1	72.5	14.1
24 ^f				Ethanol:DMF (4:1)	1	72.6	16.1
25 ^f				Ethanol:DMF (3:2)	1	73.7	23.7
26 ^g	353	3	1.4 (3)	Ethanol	0	>99	>99

Table S3. Optimization of reaction parameters for maximizing biphenyl yield from chlorobenzene (CB)^a

^aReaction conditions: Chlorobenzene (CB, 0.5 mmol), Phenylboronic acid (0.75 mmol), K₂CO₃ (1 mmol), Pd/AZC, Solvent (5 mL), Round bottomed flask. Abbreviation: TBAB; tetrabutylammonium bromide, MIBK; methyl isobutyl ketone, DMSO; dimethylsulfoxide, DMA; *N,N*-dimethylacetamide. DMF, *N,N*-dimethylformamide. ^bDetermined by ICP-AES analysis. ^cTBAB:CB in mmol:mmol. ^dDetermined by GC using naphthalene as internal standard on the basis of bromobenzene or chlorobenzene. ^e50 mL Teflon lined Autoclave. ^fSealed glass tube. ^g*p*-Nitrochlorobenzene (0.5 mmol) was used instead of chlorobenzene.

*Note; The higher biphenyl yields than conversions in entries 1,2 and 10 are due to the homocoupling of phenylboronic acid.

Fig. S2 Zn K-edge XANES spectrum of AZC (black solid line) and created spectrum using 58% $Zn(OAc)_2$ and 42% $Zn(NO_3)_2$ •6H₂O (red dashed line).

Fig. S3 XPS of AZC (black) and Pd/AZC (red) for (a) survey, (b) C 1s, (c) N 1s, and (d) Zn 2p_{3/2}.

Fig. S4 (A) Fourier transform (FT) of k^3 -weighted Zn K-edge EXAFS spectrum of references and AZC. **(B)** Calculated Zn K-edge EXAFS spectrum of Zn(NO₃)₂•6H₂O and Zn(OAc)₂ in different ratio. The ratio of Zn(NO₃)₂•6H₂O to Zn(OAc)₂ are (a) 100:0, (b) 50:50, (c) 25:75, (d) 20:80, (e) 10:90, (f) 0:100. The merged spectra with higher content of Zn(OAc)₂ (above 80%) demonstrated good correlation to the obtained features of AZC (the humped peak).

Fig. S5 Infrared (IR) spectra of AZC and Pd/AZC. The weak band of Pd-N is also shown.

Fig. S6 XRD patterns of various organozinc coordination polymer. A part of the XRD pattern was magnified to demonstrate the reflection of material after reaction. The catalyst was found to possess structural resemblance after the SMC reaction. The catalyst amount was low and thus was measured along with KBr (\blacktriangle) formed in the reaction and K₂CO₃ (\blacksquare). The arrow indicates one of the main reflection from the material at 11.2° in the Pd/AZC after the SMC reaction.

Scheme S1 An illustrative sketch of proposed mechanism of the SMC reaction of bromobenzene in the presence of Pd/AZC catalyst. Hydrogen atoms on nitrogen atoms are not shown for simplicity.

Fig. S7 ¹H NMR (400MHz, DMSO- d_6) of isolated 4-phenylbenzoic acid (Table 2, entry 4) obtained as colorless crystals.

Fig. S8 ¹H NMR (400MHz, DMSO-d₆) of 4-methoxy-4'-nitro-1,1'-biphenyl (Table 2, entry 6) obtained as yellow solid. An impurity of 4-methoxyphenylboronic acid was also recorded at δ 3.783, 6.9915, 7.9225 ppm.

Fig. S9 MS of 4-methoxy-4'-nitro-1,1'-biphenyl ($C_{13}H_{11}NO_3$; Calcd. Mol. Mass 229.23 g mol⁻¹) (Table 2, entry 6) obtained as yellow solid.

Fig. S10 ¹H NMR (400MHz, DMSO-d₆) of 4-fluoro-4'-nitro-1,1'-biphenyl (Table 2, entry 7) obtained as dirty yellow to light brown solid. The spectrum was recorded for the reaction mixture.

Fig. S11 MS of 4-fluoro-4'-nitro-1,1'-biphenyl ($C_{12}H_8FNO_2$; Calcd. Mol. Mass 217.20 g mol⁻¹) (Table 2, entry 7) obtained as dirty yellow to light brown solid.

Fig. S12 ¹H NMR of (400MHz, DMSO-d₆) 3-hydroxy-[1,1'-biphenyl]-4-carboxylic acid (Table 2, entry 11) obtained as light pink solid. The spectrum was recorded for the reaction mixture.

Fig. S13 MS of 3-hydroxy-[1,1'-biphenyl]-4-carboxylic acid ($C_{13}H_{10}O_3$; Calcd. Mol. Mass 214.22 g mol⁻¹) (Table 2, entry 11) obtained as light pink solid.