Highly sensitive and selective fluorescent probe for Ag⁺ based on a

Eu³⁺ post-functionalized metal-organic framework in aqueous media

Ji-Na Hao, Bing Yan*

Figure S1 FTIR spectra of MIL-121.

Figure S2 UV-vis absorption spectra of suspended MIL-121 and Eu³⁺@MIL-121 in H₂O solution. The absorption band at 300 nm is assigned to π - π * transitions of the ligands in MIL-121. The absorption bands in the visible region (λ =550–650 nm) are relatively wide, which should be caused by metal-to-ligand charge transition (MLCT).¹

Figure S3 Excitation and emission spectra of MIL-121.

Figure S4 Comparison of the PL spectra of Eu³⁺@MIL-121 in solid state (black) and in suspension state (red)

Figure S5 Day-to day fluorescence stability of Eu³⁺@MIL-121 in aqueous solution.

Compounds	Luminescence lifetimes (µs)
Ag^+	975
K^+	211
Ca ²⁺	204
Na ⁺	196
Cd^{2+}	200
Origin	206
Mg^{2+}	192
Zn^{2+}	186
Hg^{2+}	167
Mn^{2+}	314
Pb ²⁺	325
Ni ²⁺	120
Co ²⁺	132
Al ³⁺	126
Cu ²⁺	84
Cr ³⁺	122
Fe ³⁺	undetectable

Table S1 Response of luminescence lifetime of Eu^{3+} @MIL-121towards aqueous solutions of various metal cations

Figure S6 Comparison of the emission intensity of Eu³⁺@MIL-121 samples in Ag⁺ aqueous obtained at different interaction times, $\lambda_{ex} = 315$ nm.

Figure S7 The excitation spectra of Eu^{3+} @MIL-121 in the absence (black) and presence of Ag⁺ (red) in aqueous solution.

Figure S8 PXRD patterns of the Eu³⁺@MIL-121 after immersing in aqueous solutions with various metal ions.

References

1 J. Jin, X. Han, Q. Meng, D. Li, Y. X. Chi and S. Y. Niu, J. Solid. State. Chem., 2013, 197, 92.