Supporting Information

Graphene-based Electrochemical Filter for Water Purification

Yanbiao Liu,^{*a,b*} Juen Hon Dustin Lee,^{*a*} Qing Xia,^{*a*} Ying Ma,^{*b*} Yang Yu,^{*a*} Lin Yue Lanry Yung,^{*c*} Jianping Xie,^{*c*} Choon Nam Ong,^{*b*} Chad D. Vecitis^{*d*} and Zhi Zhou^{*a,b,*,*}

^a. Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, 1 Engineering Drive 2, E1A-07-03, Singapore 117576
^b. NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411
^c. Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585
^d. School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States 02138
[§]. Present address: School of Civil Engineering and Division of Environmental and Ecological Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana, United States 47907.

*Corresponding author: Phone: (765) 496-3559. E-mail: <u>zhizhou@purdue.edu</u>

Supporting information:

17 pages, 23 figures, 2 tables

Materials and Methods

Liquid chromatography-mass spectrometry (LC-MS).

A liquid chromatography-mass spectrometry (LC-MS) analysis was performed on an Agilent 1290 UHPLC system (Waldbronn, Germany) coupled to 6540 quadrupole-time of flight (Q-TOF) mass detector equipped with a dual jet stream electrospray ionization source and a MassHunter workstation. The column used for the separation was an Agilent rapid resolution HT zorbax SB-C18 (2.1×50 mm, 1.8μ m). The oven temperature was maintained at 35°C and the gradient elution involved a mobile phase consisting of (A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile. The following solvent gradient was applied: from 11% (B) to 15% (B) between 1.01 - 3.30 min; from 15% (B) to 32% (B) between 3.31 - 5.00 min; and then back to initial conditions between 5.01 - 5.50 min. Flow rate was set at 0.4 mL min-1 and 5 μ L of samples was injected. The electrospray ionization-mass spectrometry (ESI-MS) was acquired in positive ion mode and the ion spray voltage and nozzle voltage was set at 4,000 V and 1,000 V, respectively. The nebulizer nitrogen gas flow rate was set at 55 psi. For a full scan mode analysis spectra were stored from m/z 50 to 500 in centroid mode.

Figure S1 Breakthrough curves of 0.1 mmol L⁻¹ tetracycline and 0.53 mmol L⁻¹ phenol.

Figure S2. SEM image of a graphene filter (GNP:CNT=70%:30%) showing membrane corrugation.

Figure S3. FESEM characterization of pure GNP membrane.

Figure S4. FESEM images of grapheme filters with different GNP:CNT ratios. (a) GNP:CNT=100%:0%; (b) GNP:CNT=90%:10%; (c) GNP:CNT=80%:20%; (d) GNP:CNT=70%:30%; (e) GNP:CNT=60%:40%; (f) GNP:CNT=50%:50%.

Figure S5. Water flux versus applied pressure: comparison between pure GNP membrane and 70%GNP:30%CNT membrane.

Figure S6. Images showing easily flaked off GNPs after dispersion in (a) $DI-H_2O$, (b) ethanol, (c) dimethyl sulfoxide, and (d) n-methyl-2-pyrrolidone.

Figure S7. The digital images of the GNP-CNT filter before (A) and after (B) 2h continuous filtration of 0.1 mmol L^{-1} tetracycline, and no obvious change in physical morphology was observed.

Figure S8. The digital image of a GNP-CNT filter after soaking into DI for one month and no peeling off of graphene membrane was observed, indicating a strong binding of GNP-CNT layer to the PTFE membrane.

Figure S9. The XPS survey (a), C 1s (b) and O 1s (c) spectra of the GNP.

Figure S10. SEM images of the cross-sectional view of the GNP:CNT filter (a,b) and pure GNP filter (c), indicating the average membrane thickness was $15\sim20 \ \mu m$.

Figure S11. Correlation of oxidation rates and influent concentrations during the electrochemical filtration of ferrocyanide at 0.4 V (vs. Ag/AgCl).

Figure S12. Effects of influent concentrations and applied potentials on H_2O_2 production and cathodic efficiency. Experimental conditions: Na₂SO₄: 10 mmol L⁻¹, flow rate: 1.5 mL min⁻¹, GNP:CNT=70%:30%.

Figure S13. Effects of influent concentrations and applied potentials on the cathodic efficiency of eq. 4 ($\frac{1}{4}O_2 + \frac{1}{2}H_2O + e^- \rightarrow OH^-$).

Figure S14. Effects of influent concentrations and applied potentials on proton concentration. Experimental conditions: Na₂SO₄: 10 mmol L⁻¹, flow rate: 1.5 mL min⁻¹, GNP:CNT=70%:30%.

Figure S15. Formation of gas bubbles in the (a) top and (b) bottom of the filtration device duing the oxidation of ferrocyanide at 0.4 V (vs. Ag/AgCl). Arrows indicate the bubbles formed during electrichemical filtration.

Figure S16. Plot of current and time 1/2 for the batch system based on *Cottrell* equation.

Figure S17. Equivalent circuit for the EIS spectra.

Figure S18. Effects of anodic compositions and applied potentials on electrooxidation of (a) tetracycline, (b) phenol, and (c) oxalic acid. Experimental conditions: Na₂SO₄: 10 mmol L⁻¹, flow rate: 1.5 mL min⁻¹, tetracycline: 0.1 mmol L⁻¹ (26 mg C L⁻¹), phenol: 0.53 mmol L⁻¹ (38 mg C L⁻¹), oxalic acid: 0.56 mmol L⁻¹ (13 mg C L⁻¹). Note that there is no potential applied at conditions of 0.0 V (vs. Ag/AgCl) for all experiments.

 \min^{-1} .

13 / 17

Figure S19. The extracted ion chromatogram of m/z 445.16175 of the influent tetracycline and effluent samples. Applied potential ranged from 0.2 to 1.0 V (vs. Ag/AgCl). Experimental conditions: [tetracycline]_{influent}: 0.1 mmol L⁻¹, Na₂SO₄: 10 mmol L⁻¹, flow rate: 1.5 mL min⁻¹.

Figure S20. The MS spectra of (**A**) m/z 445.16175 (RT=2.016 min), (**B**) m/z 445.16175 (RT=2.675 min), (**C**) m/z 431.1086 (RT=2.978 min), (**D**) m/z 429.1303 (RT=2.202 min) and (**E**) m/z 397.1038 (RT=1.918 min). Experimental conditions: applied potential: 0.8 V (vs. Ag/AgCl), [tetracycline]_{influent}: 0.1 mmol L⁻¹, Na₂SO₄: 10 mmol L⁻¹, flow rate: 1.5 mL min⁻¹.

Figure S21. Tetracycline electrooxidation flux as a function of time. Experimental conditions: [tetracycline]_{influent}: 0.1 mmol L⁻¹, Na₂SO₄: 10 mmol L⁻¹, applied potential: 0.8 V (vs. Ag/AgCl), flow rate: 1.5 mL

Figure S22. Electrooxidation of phenol spiked reservoir water as a function of applied potential. Experimental conditions: [phenol]_{influent}: 0.53 mmol L⁻¹, Na₂SO₄: 10 mmol L⁻¹, flow rate: 1.5 mL min⁻¹.

Figure S23. Current-time profile of the electrochemical GNP:CNT filter at an applied anode potential of 0.8 V (vs. Ag/AgCl). Experimental conditions: [Phenol]_{in}: 0.53 mmol L⁻¹, Na₂SO₄: 10 mmol L⁻¹, flow rate: 1.5 mL min⁻¹, GNP:CNT=70%:30%.

 Table S1. Simulated EIS resistance and capacitance values.

System	$R_{s}(\Omega)$	$C_{f}(\mu F)$	$R_{f}(\Omega)$	CPE _{dl} (µF)	$R_{ct}(\Omega)$	$W_{mt}(\Omega)$
Filtration	4.093	0.219	97.73	250.0	130.0	33.5
Batch	1.312	0.136	94.10	3597.0	12.0	4.5

 Table S2. Chemical characteristics of the reservoir water sample.

Parameters	Values	
pH	7.25	
Dissolved oxygen (mg L ⁻¹)	9.79	
Conductivity (μ S/cm)	269	
Total organic carbon (mg L ⁻¹)	4.11	