Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Improving the Electrochemical Performance of LiNi_{0.5}Mn_{1.5}O₄ Spinel by Polypyrrole Coating as Cathode Material for the Lithium-ion Battery

Xuanwen Gao^a, Yuanfu Deng^b, David Wexler^c, Guohua Chen^d, Shulei Chou^a, Huakun Liu^a,, Zhicong Shi^e, Jiazhao Wang^{a*}

^{a*} Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia.

^b The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.

- ^c School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522, Australia.
- ^d Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clearwater Bay, Hong Kong, China.

^e Centre for Green Products and Processing Technologies, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, China.

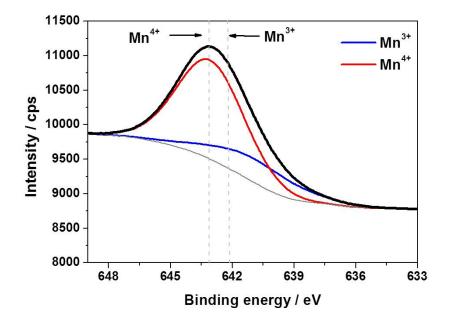


Figure S1. Mn $2p_{3/2}$ XPS spectrum of the bare LNMO spinel. The major peak with binding energy of 643.5 eV corresponds to Mn⁴⁺ and the other peak located at 642.1 eV belongs to Mn³⁺.

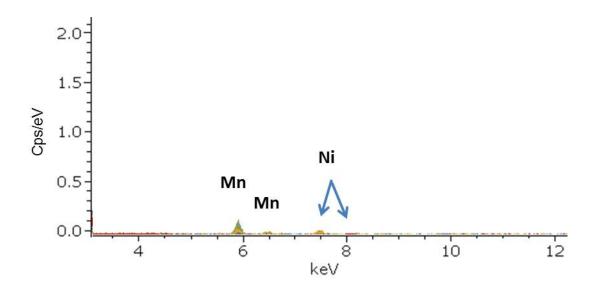


Figure S2. EDS spectrum obtained from the sample region of the lithium anode in the coin cell for the LNMO-5 wt.% PPy sample after 100 cycles at 55 $^{\circ}$ C.