Supporting Information for

Highly ordered hierarchical TiO₂ nanotube arrays for flexible fiber-type dye-sensitized solar cells

Jia Liang,^{†,‡,*} Gengmin Zhang,[†] Yingchao Yang[‡] and Jing Zhang[‡]

 $^{\dagger}\mbox{Key}$ Laboratory for the Physics and Chemistry of Nanodevices and Department of

Electronics, Peking University, Beijing 100871, China

[‡]Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street,

Houston, Texas 77005, United States

* Corresponding author: jial@pku.edu.cn

Figure S1 Side view SEM images of Ti microwires covered with smooth TiO₂ nanotube arrays (STNT, a) and hierarchical TiO₂ nanotube array (HTNT, b); the inset in Figure S1a is the top-view SEM image of the STNT under low magnification, which contains some cracks on the surface.

Figure S2 Top-view and side-view SEM images of hierarchical TiO₂ nanotube array obtained from the NH₄F solution at 200 °C for 5h (a, b) and 15h (c, d).

Figure S3 Digital photograph of a flexible fiber-type DSSC in bending state.

Figure S4 *J-V* curves of three individual flexible fiber-type DSSCs based on STNT (a) and HTNT (b) arrays. The corresponding performance parameters are summarized in Table S1.

Figure S5 (a) *J-V* plots; (b) photovoltaic parameters of a 1.6 cm long flexible fiber-type DSSC based on a STNT array under different bending angles.

			2		
Photoanodes		$J_{ m SC}/ m mA~cm^{-2}$	$V_{\rm OC}/{ m V}$	FF	η/%
	1 st	12.6	0.71	0.71	6.4
STNT	2^{nd}	12.7	0.72	0.65	5.9
	3 rd	12.8	0.71	0.70	6.4
	1 st	15.9	0.67	0.80	8.6
HTNT	2^{nd}	15.3	0.68	0.78	8.1
	3 rd	15.9	0.68	0.81	8.8

Table S1 Performance parameters of three individual flexible fiber-type DSSCs based on STNT or HTNT arrays.

 Table S2 Performance parameters of a 1.7 cm long flexible fiber-type DSSC based on the HTNT array under different bending angles

Bending Angles	$J_{\rm SC}/{ m mA~cm^{-2}}$	$V_{\rm OC}/{ m V}$	FF	η/%
0°	15.9	0.67	0.80	8.6
30°	15.7	0.68	0.79	8.5
90°	16.0	0.68	0.81	8.8
180°	15.5	0.69	0.81	8.6
Recover	15.6	0.68	0.80	8.6

 Table S3 Performance parameters of a 1.6 cm long flexible fiber-type DSSC based on the STNT array under different bending angles

Bending Angles	$J_{ m SC}/ m mA~cm^{-2}$	$V_{\rm OC}/{ m V}$	FF	η/%
0°	12.6	0.71	0.71	6.4
30°	13.5	0.70	0.69	6.5
90°	13.1	0.72	0.70	6.6
180°	12.7	0.72	0.71	6.4
Recover	12.6	0.71	0.70	6.3

Table S4 Performance parameters of the flexible fiber-type DSSC based on HTNT arrays under different bending times when θ =90°.

Bending Times	$J_{\rm SC}/{ m mA~cm^{-2}}$	$V_{\rm OC}/{ m V}$	FF	η/%
Pristine	15.9	0.67	0.80	8.6
100	15.0	0.68	0.82	8.4
500	14.2	0.67	0.81	7.7