Supplementary information for:

Point defect-assisted doping mechanism and related thermoelectric

transport properties in Pb-doped BiCuOTe

Tae-Ho An,^{a,b} Young Soo Lim,^{*a} Hyoung-Seuk Choi,^a Won-Seon Seo,^a Cheol-Hee Park,^c Gwi-Rang Kim,^b Chan Park,^{*b} Chang Hoon Lee^d and Ji Hoon Shim^{*d,e}

^aEnergy and Environmental Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801, Republic of Korea. ^bDepartment of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea. ^cLG Chem/Research Park, Daejeon 305-380, Republic of Korea ^dDepartment of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Korea. ^eDivisions of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea

E-mail: yslim@kicet.re.kr (Y.S. Lim), pchan@snu.ac.kr (C. Park) and jhshim@postech.ac.kr (J.H. Shim)

Figure S1. Relative intensities of the main peak for Bi_2O_3 (111) to that for BiCuOTe (102) in the XRD patterns of Fig. 1(a).

Pb (at%)	<i>a</i> (nm)	<i>c</i> (nm)
0	$0.4035 \pm 0.8146 \ge 10^{-4}$	$0.9516 \pm 0.2215 \text{ x } 10^{-4}$
1	$0.4037 \pm 1.3041 \ge 10^{-4}$	$0.9524 \pm 0.6141 \ge 10^{-4}$
2	$0.4039 \pm 3.7186 \ge 10^{-4}$	$0.9534 \pm 3.2486 \ge 10^{-4}$
4	$0.4047 \pm 8.6220 \text{ x } 10^{-4}$	$0.9562 \pm 5.5241 \text{ x } 10^{-4}$
6	$0.4043 \pm 9.9589 \ge 10^{-4}$	$0.9572 \pm 0.9802 \text{ x } 10^{-4}$

 Table S1. Lattice parameters of Pb-doped BiCuOTe compounds.