Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Micelle Anchored In-situ Synthesis of V₂O₃ nanoflakes@C

composites for supercapacitors

Hong-Yi Li,^{*a,b**} Kai Jiao,^{*a*} Liang Wang,^{*a*} Chuang Wei, ^{*a*} Xinlu Li^{*a*} and Bing Xie^{*a*}

^aCollege of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.

E-mail: lihongyipku@gmail.com; Fax: +86-23-65127306; Tel: +86-23-65102469.

^bState Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization,

Panzhihua, Sichuan Province 617000, China.

Fig. S1 Raman spectra of activated carbon

Fig. S2 ATR-FTIR spectra of activated carbon and V_2O_3 nanoflakes@C composites

Fig. S3 TGA curves of (a) pure V₂O₃, (b) V₂O₃ nanoflakes@C composites and (c) activated carbon in air

Fig. S4 EDS spectrum of V_2O_3 nanoflakes@C composites

Fig. S5 N_2 adsorption/desorption isotherms and BJH pore-size distribution plots (inset) of (a) V₂O₃ nanoflakes@C composites and (b) bulk V₂O₃.

♦ desorption; ● adsorption

Fig. S6 Comparable Nyquist plots obtained over the frequency range of 100 kHz to 0.01 Hz.

Fig.S7 CV curves (a) and charge/discharge curves (b) of physical mixture V_2O_3/C .

Fig. S8 Specific capacitance changes with (a) concentration of CTAB and (b) NH₄VO₃/C mass ratio