Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2014

Supporting Information

High-efficiency Solid-state Polymer Electrolyte Dye-sensitized Solar

Cells with a Bi-functional Porous Layer

Woohyung Cho^a, Young Rae Kim^a, Donghoon Song^a, Hyung Woo Choi^a and Yong Soo Kang^{a,*}

Fig. S1. SEM image of an alumina scattering layer (a) top-view and (b) cross-section.

Fig. S2. IV characteristics from different electrodes of transparent TiO_2 and those with and without alumina and a TiO_2 scattering layer.

Figure S3. IPCE spectra of DSCs with a transparent reference $TiO_2(\mathbf{R})$ without a scattering layer and with alumina (A) and titania (T) layers.

Fig. S4. IV characteristics from different electrodes of transparent TiO_2 and those with and without alumina based on liquid electrolyte.

Figure S5. Normalized IPCE spectra of DSCs from different electrodes of transparent TiO_2 and those with and without alumina based on liquid electrolyte.

Electrolyte	Symbol	Spacer/µm	V _{oc} /V	J _{SC} /mAcm ⁻²	FF	Eff./%
Liquid	L	25	0.70	17.5	0.73	9.0
	PO	0	0.72	16.5	0.69	8.2
Polymer	P10	25	0.73	15.7	0.70	8.0
	P45	60	0.74	14.5	0.69	7.4

Table S1. Photovoltaic performance of DSCs based on liquid electrolyte and an SPE using an alumina layer with varying thickness of spacer.

Table S2. Photovoltaic performance of DSCs based on different electrodes of transparent TiO_2 and those with and without alumina and a TiO_2 scattering layer.

Electrode	V _{OC} /V	J _{SC} /mAcm ⁻²	FF	Eff./%
R (Ref)	0.76	13.5	0.70	7.2
RA (Ref+Al ₂ O ₃)	0.75	13.8	0.70	7.2
RT (Ref+TiO ₂)	0.75	15.1	0.68	7.7
RTA	0.75	15 5	0.68	7.0
(Ref+TiO ₂ +Al ₂ O ₃)		15.5		1.9

Table S3. Photovoltaic performance of liquid electrolyte based-DSCs based on different electrodes of transparent TiO_2 and those with and without alumina.

Electrode	V _{OC} /V	J _{SC} /mAcm ⁻²	FF	Eff./%
TiO ₂	0.75	15.1	0.68	7.7
$TiO_2 + Al_2O_3$	0.75	15.5	0.68	7.9